1.Semi-supervised Long-tail Endoscopic Image Classification.
Run-Nan CAO ; Meng-Jie FANG ; Hai-Ling LI ; Jie TIAN ; Di DONG
Chinese Medical Sciences Journal 2022;37(3):171-180
Objective To explore the semi-supervised learning (SSL) algorithm for long-tail endoscopic image classification with limited annotations. Method We explored semi-supervised long-tail endoscopic image classification in HyperKvasir, the largest gastrointestinal public dataset with 23 diverse classes. Semi-supervised learning algorithm FixMatch was applied based on consistency regularization and pseudo-labeling. After splitting the training dataset and the test dataset at a ratio of 4:1, we sampled 20%, 50%, and 100% labeled training data to test the classification with limited annotations. Results The classification performance was evaluated by micro-average and macro-average evaluation metrics, with the Mathews correlation coefficient (MCC) as the overall evaluation. SSL algorithm improved the classification performance, with MCC increasing from 0.8761 to 0.8850, from 0.8983 to 0.8994, and from 0.9075 to 0.9095 with 20%, 50%, and 100% ratio of labeled training data, respectively. With a 20% ratio of labeled training data, SSL improved both the micro-average and macro-average classification performance; while for the ratio of 50% and 100%, SSL improved the micro-average performance but hurt macro-average performance. Through analyzing the confusion matrix and labeling bias in each class, we found that the pseudo-based SSL algorithm exacerbated the classifier's preference for the head class, resulting in improved performance in the head class and degenerated performance in the tail class. Conclusion SSL can improve the classification performance for semi-supervised long-tail endoscopic image classification, especially when the labeled data is extremely limited, which may benefit the building of assisted diagnosis systems for low-volume hospitals. However, the pseudo-labeling strategy may amplify the effect of class imbalance, which hurts the classification performance for the tail class.
Supervised Machine Learning
;
Algorithms
2.Diagnosis and prediction of periodontally compromised teeth using a deep learning-based convolutional neural network algorithm
Jae Hong LEE ; Do hyung KIM ; Seong Nyum JEONG ; Seong Ho CHOI
Journal of Periodontal & Implant Science 2018;48(2):114-123
PURPOSE: The aim of the current study was to develop a computer-assisted detection system based on a deep convolutional neural network (CNN) algorithm and to evaluate the potential usefulness and accuracy of this system for the diagnosis and prediction of periodontally compromised teeth (PCT). METHODS: Combining pretrained deep CNN architecture and a self-trained network, periapical radiographic images were used to determine the optimal CNN algorithm and weights. The diagnostic and predictive accuracy, sensitivity, specificity, positive predictive value, negative predictive value, receiver operating characteristic (ROC) curve, area under the ROC curve, confusion matrix, and 95% confidence intervals (CIs) were calculated using our deep CNN algorithm, based on a Keras framework in Python. RESULTS: The periapical radiographic dataset was split into training (n=1,044), validation (n=348), and test (n=348) datasets. With the deep learning algorithm, the diagnostic accuracy for PCT was 81.0% for premolars and 76.7% for molars. Using 64 premolars and 64 molars that were clinically diagnosed as severe PCT, the accuracy of predicting extraction was 82.8% (95% CI, 70.1%–91.2%) for premolars and 73.4% (95% CI, 59.9%–84.0%) for molars. CONCLUSIONS: We demonstrated that the deep CNN algorithm was useful for assessing the diagnosis and predictability of PCT. Therefore, with further optimization of the PCT dataset and improvements in the algorithm, a computer-aided detection system can be expected to become an effective and efficient method of diagnosing and predicting PCT.
Area Under Curve
;
Artificial Intelligence
;
Bicuspid
;
Boidae
;
Dataset
;
Diagnosis
;
Learning
;
Machine Learning
;
Methods
;
Molar
;
Periodontal Diseases
;
ROC Curve
;
Sensitivity and Specificity
;
Supervised Machine Learning
;
Tooth
;
Weights and Measures
3.Heart Alert: A heart disease prediction system using machine learning approach and optimization techniques
Justin Allen P. Denopol ; Ma. Sheila A. Magboo ; Vincent Peter C. Magboo
Philippine Journal of Health Research and Development 2022;26(3):83-92
Background:
Cardiovascular diseases belong to the top three leading causes of mortality in the Philippines with 17.8 % of the total deaths. Lifestyle-related habits such as alcohol consumption, smoking, poor diet and nutrition, high sedentary behavior, overweight, and obesity have been increasingly implicated in the high rates of heart disease among Filipinos leading to a significant burden to the country's healthcare system. The objective of this study was to predict the presence of heart disease using various machine learning algorithms (support vector machine, naïve Bayes, random forest, logistic regression, decision tree, and adaptive boosting) evaluated on an anonymized publicly available cardiovascular disease dataset.
Methodology:
Various machine learning algorithms were applied on an anonymized publicly available
cardiovascular dataset from a machine learning data repository (IEEE Dataport). A web-based application
system named Heart Alert was developed based on the best machine learning model that would predict the risk of developing heart disease. An assessment of the effects of different optimization techniques as to the imputation methods (mean, median, mode, and multiple imputation by chained equations) and as to the feature selection method (recursive feature elimination) on the classification performance of the machine learning algorithms was made. All simulation experiments were implemented via Python 3.8 and its machine learning libraries (Scikit-learn, Keras, Tensorflow, Pandas, Matplotlib, Seaborn, NumPy).
Results:
The support vector machine without imputation and feature selection obtained the highest
performance metrics (90.2% accuracy, 87.7% sensitivity, 93.6% specificity, 94.9% precision, 91.2% F1-score and an area under the receiver operating characteristic curve of 0.902 ) and was used to implement the heart disease prediction system (Heart Alert). Following very closely were random forest with mean or median imputation and logistic regression with mode imputation, all having no feature selection which also performed well.
Conclusion
The performance of the best four machine learning models suggests that for this dataset,
imputation technique for missing values may or may not be done. Likewise, recursive feature elimination for feature selection may not apply as all variables seem to be important in heart disease prediction. An early accurate diagnosis leading to prompt intervention efforts is very crucial as it improves the patient's quality of life and diminishes the risk of developing cardiac events.
Machine Learning
;
Support Vector Machine
4.Anesthesia research in the artificial intelligence era.
Hyung Chul LEE ; Chul Woo JUNG
Anesthesia and Pain Medicine 2018;13(3):248-255
A noteworthy change in recent medical research is the rapid increase of research using big data obtained from electrical medical records (EMR), order communication systems (OCS), and picture archiving and communication systems (PACS). It is often difficult to apply traditional statistical techniques to research using big data because of the vastness of the data and complexity of the relationships. Therefore, the application of artificial intelligence (AI) techniques which can handle such problems is becoming popular. Classical machine learning techniques, such as k-means clustering, support vector machine, and decision tree are still efficient and useful for some research problems. The deep learning techniques, such as multi-layer perceptron, convolutional neural network, and recurrent neural network have been spotlighted by the success of deep belief networks and convolutional neural networks in solving various problems that are difficult to solve by conventional methods. The results of recent research using artificial intelligence techniques are comparable to human experts. This article introduces technologies that help researchers conduct medical research and understand previous literature in the era of AI.
Anesthesia*
;
Artificial Intelligence*
;
Decision Trees
;
Humans
;
Learning
;
Machine Learning
;
Medical Records
;
Neural Networks (Computer)
;
Radiology Information Systems
;
Support Vector Machine
5.Population Pharmacokinetic and Pharmacodynamic Models of Propofol in Healthy Volunteers using NONMEM and Machine Learning Methods.
Yoo Mi KIM ; Sung Hong KANG ; Il Su PARK ; Gyu Jeong NOH
Journal of Korean Society of Medical Informatics 2008;14(2):147-159
OBJECTIVES: The primary objective of this study is to compare model performance of machine learning methods with that of a previous study in which a nonlinear mixed effects model was created using NONMEM(R) for the pharmacokinetic and pharmacodynamic data for propofol. The secondary objective was to evaluate if a pharmacodynamic model describing the relationship between the dose of propofol and bispectral index (BIS) outperform that describing the relationship between a pharmacokinetic model derived-predicted concentrations of propofol and BIS. METHODS: Data were collected during a study involving the infusion of propofol into healthy volunteers. Pharmacokinetic and pharmacodynamic models were constructed using artificial neural networks (ANNs), support vector machines (SVMs), and multi-method ensembles and were compared with the nonlinear mixed effects method as implemented by NONMEM(R). Model performance was assessed by goodness-of-fit statistics, paired t-tests between predicted and observed values for each model and scatterplots. RESULTS: In pharmacokinetic analysis, ensemble I, the mean of ANN and NONMEM(R) predictions, achieved minimal error and the highest correlation coefficient. SVM produced the highest error and the lowest correlation coefficient. In pharmacodynamic analysis, ANN exhibited the best performance. An ANNModel describing the relationship between the dose of propofol and BIS was not inferior to an ANN model describing the relationship between predicted concentrations of propofol derived from an ANN pharmacokinetic model and BIS. CONCLUSIONS: In pharmacokinetic analysis, ensemble combined with ANN achieved slightly better performance than NONMEM(R). The relationship between the dose of propofol and BIS can be predicted without considering pharmacokinetics of propofol.
Machine Learning
;
Propofol
;
Support Vector Machine
6.Application and prospect of machine learning in orthopaedic trauma.
Chuwei TIAN ; Xiangxu CHEN ; Huanyi ZHU ; Shengbo QIN ; Liu SHI ; Yunfeng RUI
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(12):1562-1568
OBJECTIVE:
To review the current applications of machine learning in orthopaedic trauma and anticipate its future role in clinical practice.
METHODS:
A comprehensive literature review was conducted to assess the status of machine learning algorithms in orthopaedic trauma research, both nationally and internationally.
RESULTS:
The rapid advancement of computer data processing and the growing convergence of medicine and industry have led to the widespread utilization of artificial intelligence in healthcare. Currently, machine learning plays a significant role in orthopaedic trauma, demonstrating high performance and accuracy in various areas including fracture image recognition, diagnosis stratification, clinical decision-making, evaluation, perioperative considerations, and prognostic risk prediction. Nevertheless, challenges persist in the development and clinical implementation of machine learning. These include limited database samples, model interpretation difficulties, and universality and individualisation variations.
CONCLUSION
The expansion of clinical sample sizes and enhancements in algorithm performance hold significant promise for the extensive application of machine learning in supporting orthopaedic trauma diagnosis, guiding decision-making, devising individualized medical strategies, and optimizing the allocation of clinical resources.
Artificial Intelligence
;
Orthopedics
;
Machine Learning
;
Algorithms
7.Prediction of trends for fine-scale spread of Oncomelania hupensis in Shanghai Municipality based on supervised machine learning models.
Yan Feng GONG ; Zhuo Wei LUO ; Jia Xin FENG ; Jing Bo XUE ; Zhao Yu GUO ; Yan Jun JIN ; Qing YU ; Shang XIA ; Shan LÜ ; Jing XU ; Shi Zhu LI
Chinese Journal of Schistosomiasis Control 2022;34(3):241-251
OBJECTIVE:
To predict the trends for fine-scale spread of Oncomelania hupensis based on supervised machine learning models in Shanghai Municipality, so as to provide insights into precision O. hupensis snail control.
METHODS:
Based on 2016 O. hupensis snail survey data in Shanghai Municipality and climatic, geographical, vegetation and socioeconomic data relating to O. hupensis snail distribution, seven supervised machine learning models were created to predict the risk of snail spread in Shanghai, including decision tree, random forest, generalized boosted model, support vector machine, naive Bayes, k-nearest neighbor and C5.0. The performance of seven models for predicting snail spread was evaluated with the area under the receiver operating characteristic curve (AUC), F1-score and accuracy, and optimal models were selected to identify the environmental variables affecting snail spread and predict the areas at risk of snail spread in Shanghai Municipality.
RESULTS:
Seven supervised machine learning models were successfully created to predict the risk of snail spread in Shanghai Municipality, and random forest (AUC = 0.901, F1-score = 0.840, ACC = 0.797) and generalized boosted model (AUC= 0.889, F1-score = 0.869, ACC = 0.835) showed higher predictive performance than other models. Random forest analysis showed that the three most important climatic variables contributing to snail spread in Shanghai included aridity (11.87%), ≥ 0 °C annual accumulated temperature (10.19%), moisture index (10.18%) and average annual precipitation (9.86%), the two most important vegetation variables included the vegetation index of the first quarter (8.30%) and vegetation index of the second quarter (7.69%). Snails were more likely to spread at aridity of < 0.87, ≥ 0 °C annual accumulated temperature of 5 550 to 5 675 °C, moisture index of > 39% and average annual precipitation of > 1 180 mm, and with the vegetation index of the first quarter of > 0.4 and the vegetation index of the first quarter of > 0.6. According to the water resource developments and township administrative maps, the areas at risk of snail spread were mainly predicted in 10 townships/subdistricts, covering the Xipian, Dongpian and Tainan sections of southern Shanghai.
CONCLUSIONS
Supervised machine learning models are effective to predict the risk of fine-scale O. hupensis snail spread and identify the environmental determinants relating to snail spread. The areas at risk of O. hupensis snail spread are mainly located in southwestern Songjiang District, northwestern Jinshan District and southeastern Qingpu District of Shanghai Municipality.
Animals
;
Bayes Theorem
;
China/epidemiology*
;
Ecosystem
;
Gastropoda
;
Supervised Machine Learning
8.Application of Deep Learning System into the Development of Communication Device for Quadriplegic Patient
Jung Hwan LEE ; Taewoo KANG ; Byung Kwan CHOI ; In Ho HAN ; Byung Chul KIM ; Jung Hoon RO
Korean Journal of Neurotrauma 2019;15(2):88-94
OBJECTIVE: In general, quadriplegic patients use their voices to call the caregiver. However, severe quadriplegic patients are in a state of tracheostomy, and cannot generate a voice. These patients require other communication tools to call caregivers. Recently, monitoring of eye status using artificial intelligence (AI) has been widely used in various fields. We made eye status monitoring system using deep learning, and developed a communication system for quadriplegic patients can call the caregiver. METHODS: The communication system consists of 3 programs. The first program was developed for automatic capturing of eye images from the face using a webcam. It continuously captured and stored 15 eye images per second. Secondly, the captured eye images were evaluated for open or closed status by deep learning, which is a type of AI. Google TensorFlow was used as a machine learning tool or library for convolutional neural network. A total of 18,000 images were used to train deep learning system. Finally, the program was developed to utter a sound when the left eye was closed for 3 seconds. RESULTS: The test accuracy of eye status was 98.7%. In practice, when the quadriplegic patient looked at the webcam and closed his left eye for 3 seconds, the sound for calling a caregiver was generated. CONCLUSION: Our eye status detection software using AI is very accurate, and the calling system for the quadriplegic patient was satisfactory.
Artificial Intelligence
;
Caregivers
;
Humans
;
Learning
;
Machine Learning
;
Quadriplegia
;
Tracheostomy
;
Unsupervised Machine Learning
;
Voice
9.Arousal and Valence Classification Model Based on Long Short-Term Memory and DEAP Data for Mental Healthcare Management.
Eun Jeong CHOI ; Dong Keun KIM
Healthcare Informatics Research 2018;24(4):309-316
OBJECTIVES: Both the valence and arousal components of affect are important considerations when managing mental healthcare because they are associated with affective and physiological responses. Research on arousal and valence analysis, which uses images, texts, and physiological signals that employ deep learning, is actively underway; research investigating how to improve the recognition rate is needed. The goal of this research was to design a deep learning framework and model to classify arousal and valence, indicating positive and negative degrees of emotion as high or low. METHODS: The proposed arousal and valence classification model to analyze the affective state was tested using data from 40 channels provided by a dataset for emotion analysis using electrocardiography (EEG), physiological, and video signals (the DEAP dataset). Experiments were based on 10 selected featured central and peripheral nervous system data points, using long short-term memory (LSTM) as a deep learning method. RESULTS: The arousal and valence were classified and visualized on a two-dimensional coordinate plane. Profiles were designed depending on the number of hidden layers, nodes, and hyperparameters according to the error rate. The experimental results show an arousal and valence classification model accuracy of 74.65 and 78%, respectively. The proposed model performed better than previous other models. CONCLUSIONS: The proposed model appears to be effective in analyzing arousal and valence; specifically, it is expected that affective analysis using physiological signals based on LSTM will be possible without manual feature extraction. In a future study, the classification model will be adopted in mental healthcare management systems.
Arousal*
;
Classification*
;
Dataset
;
Delivery of Health Care*
;
Electrocardiography
;
Learning
;
Machine Learning
;
Memory, Short-Term*
;
Methods
;
Peripheral Nervous System
;
Supervised Machine Learning
10.Machine learning in medicine: what clinicians should know.
Jordan Zheng TING SIM ; Qi Wei FONG ; Weimin HUANG ; Cher Heng TAN
Singapore medical journal 2023;64(2):91-97
With the advent of artificial intelligence (AI), machines are increasingly being used to complete complicated tasks, yielding remarkable results. Machine learning (ML) is the most relevant subset of AI in medicine, which will soon become an integral part of our everyday practice. Therefore, physicians should acquaint themselves with ML and AI, and their role as an enabler rather than a competitor. Herein, we introduce basic concepts and terms used in AI and ML, and aim to demystify commonly used AI/ML algorithms such as learning methods including neural networks/deep learning, decision tree and application domain in computer vision and natural language processing through specific examples. We discuss how machines are already being used to augment the physician's decision-making process, and postulate the potential impact of ML on medical practice and medical research based on its current capabilities and known limitations. Moreover, we discuss the feasibility of full machine autonomy in medicine.
Humans
;
Artificial Intelligence
;
Machine Learning
;
Algorithms
;
Neural Networks, Computer
;
Medicine