1.The role of complement C5a receptor in DPSC odontoblastic differentiation and in vivo reparative dentin formation.
Muhammad IRFAN ; Ji-Hyun KIM ; Hassan MARZBAN ; David A REED ; Anne GEORGE ; Lyndon F COOPER ; Seung CHUNG
International Journal of Oral Science 2022;14(1):7-7
Therapeutic dentin regeneration remains difficult to achieve, and a majority of the attention has been given to anabolic strategies to promote dentinogenesis directly, whereas, the available literature is insufficient to understand the role of inflammation and inflammatory complement system on dentinogenesis. The aim of this study is to determine the role of complement C5a receptor (C5aR) in regulating dental pulp stem cells (DPSCs) differentiation and in vivo dentin regeneration. Human DPSCs were subjected to odontogenic differentiation in osteogenic media treated with the C5aR agonist and C5aR antagonist. In vivo dentin formation was evaluated using the dentin injury/pulp-capping model of the C5a-deficient and wild-type mice. In vitro results demonstrate that C5aR inhibition caused a substantial reduction in odontogenic DPSCs differentiation markers such as DMP-1 and DSPP, while the C5aR activation increased these key odontogenic genes compared to control. A reparative dentin formation using the C5a-deficient mice shows that dentin regeneration is significantly reduced in the C5a-deficient mice. These data suggest a positive role of C5aR in the odontogenic DPSCs differentiation and tertiary/reparative dentin formation. This study addresses a novel regulatory pathway and a therapeutic approach for improving the efficiency of dentin regeneration in affected teeth.
Animals
;
Cell Differentiation/physiology*
;
Cells, Cultured
;
Complement C5a/metabolism*
;
Dental Pulp/physiology*
;
Dentin
;
Mice
;
Receptor, Anaphylatoxin C5a
;
Stem Cells
2.Regulation of tyrosylprotein sulfotransferases activity by sulfotyrosine.
Jin-Ming GAO ; Qi-Ping FENG ; Jin ZUO ; Fu-De FANG ; Lei JIANG ; Zi-Jian GUO
Acta Academiae Medicinae Sinicae 2007;29(2):241-245
OBJECTIVETo investigate the role of sulfated tyrosine in regulating the activity of tyrosylprotein sulfotransferases (TPST) 1 and TPST2.
METHODSConstructs of TPST 1 and TPST2 were amplified by polymerase chain reaction (PCR), then fused into immunoglobulin G1 Fc region. All the variants in which sulfated tyrosines were mutated to phenylalanine were made by the PCR-based Quick Change method and confirmed by sequencing the entire reading frame. Small hairpin RNA (shRNA) constructs-targeting nucleotides 259-275 of TPST1 and nucleotides 73-94 of TPST2 were generated and subcloned into pBluescript. Human embryonic kidney (HEK) 293T cells were transfected with these plasmids. One day later, cells were split: one part was labeled with 35S-cysteine and methionine or 35S-Na2SO3 overnight, the second part was used for 125I labeled binding experiment, and the third part was retained for binding and flow cytometry.
RESULTSTyrosines at position 326 of TPST1 and position 325 of TPST2 were sulfated posttranslationally. Tyrosine sulfation of TPSTs was effectively inhibited by sulfation inhibitors, including specific shRNAs and non-specific NaCIO3. shRNAs reduced the sulfation of C3a receptor and C5a receptor, and partially blocked the binding of these two receptors to their respective ligands.
CONCLUSIONSThe activities of TPSTs were regulated by tyrosine sulfation. Inhibition of sulfotyrosine decreases the binding ability of C3a receptor and C5a receptor to their respective ligands.
Cell Line ; Complement C3a ; metabolism ; Complement C5a ; metabolism ; Humans ; Protein Binding ; Protein Processing, Post-Translational ; Receptor, Anaphylatoxin C5a ; metabolism ; Receptors, Complement ; metabolism ; Sulfotransferases ; genetics ; metabolism ; Transfection ; Tyrosine ; analogs & derivatives ; metabolism
3.Levels of complement components C3a and C5a in renal injury among trichloroethylene-sensitized BALB/c mice.
Wansheng ZHA ; Jing LENG ; Feng WANG ; Jiaxiang ZHANG ; Shulong LI ; Hui WANG ; Tong SHEN ; Qixing ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(5):335-339
OBJECTIVETo determine the levels of complement components C3a and C5a in the kidneys of trichloroethylene (TCE)-sensitized BALB/c mice, and to investigate the role of complement components in TCE-induced renal injury among BALB/c mice.
METHODSSixty-two female BALB/c mice were randomly divided into blank control group, vehicle control group, and TCE sensitization group. The mice in TCE sensitization group were sensitized by one intracutaneous injection and one abdominal smear of TCE. At 24 h, 48 h, 72 h, and 7 d after the second sensitization, mice were sacrificed, and the blood and kidneys were collected. An automatic biochemical analyzer was used in the determination of serum blood urea nitrogen (BUN) and creatinine (Cr). The levels of C3a and C5a in the kidneys were determined by immunohistochemistry.
RESULTSThe sensitization rate of TCE sensitization group was 42.0%. Kidney coefficient and serum levels of BUN and Cr were significantly increased in the TCE sensitization group as compared with the vehicle control group at 48 h and 72 h after sensitization (P < 0.05). The kidney coefficients of the TCE sensitization group at 48 h and 72 h were significantly higher than those of the control groups (P < 0.05). In comparison with the vehicle control group, however, no significant change was found in kidney coefficient, serum BUN, or serum Cr at 7 d after TCE sensitization (P > 0.05). Levels of C3a and C5a at 48 h (3.80±0.84 and 4.00±1.00, respectively) and 72 h (4.40 ± 1.14 and 4.40 ± 1.14, respectively) after sensitization were all significantly higher than those of the vehicle control group (P < 0.05), but no significant difference was found in level of C3a (1.80±0.45) or C5a (2.00 ± 0.71) at 7 d (P > 0.05).
CONCLUSIONTCE sensitization can induce renal injury in mice. Levels of complement components C3a and C5a are elevated in the kidneys of sensitized mice, indicating that C3a and C5a may be involved in the renal injury induced by TCE sensitization.
Animals ; Blood Urea Nitrogen ; Complement C3a ; metabolism ; Complement C5a ; metabolism ; Creatinine ; blood ; Female ; Kidney ; metabolism ; pathology ; Mice ; Mice, Inbred BALB C ; Trichloroethylene ; toxicity
4.Expression of C3aR and C5aR in trichloroethylene-sensitized mouse liver.
Feng WANG ; Jing LENG ; Wansheng ZHA ; Shulong LI ; Hui WANG ; Tong SHEN ; Qixing ZHU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2015;33(3):171-174
OBJECTIVETo study the expression of C3aR and C5aR in trichloroethylene-sensitized mouse liver injury and discuss the pathogenesis of Dermatitis Medicamentosa-like of TCE (DMLT).
METHODS6∼8 w female BALB/c mouse were randomly divided into blank control group, solvent control group and TCE treatment group. TCE was given to the mouse for sensitization at 1th, 4th, 7th, 10th day and challenge at 17th day and 19th day. Before killing mouse, liver weight and body weight were recorded. The livers were separated at 24 h, 48 h, 72 h and 7 d after challenge. And the liver sections were used for immunofluorescence stain and RT-PCR to detect the expression levels of C3aR and C5aR.
RESULTSMicroscopic examination showed no significant change in liver structure or organization in TCE non-sensitized group, while liver cell oedema, cell necrosis and inflammatory cell infiltration were clearly observed in TCE-sensitized groups. The expression levels of C3aR and C5aR in 24 h, 48 h, 72 h and 7 d TCE-sensitized groups were significant higher than blank control group, solvent control group and related TCE non-sensitized groups (P < 0.05).
CONCLUSIONComplement activation was involved in TCE-induced liver injury and C3aR and C5aR might play essential role in the process.
Animals ; Chemical and Drug Induced Liver Injury ; Dermatitis, Occupational ; Edema ; Female ; Liver ; physiopathology ; Mice ; Mice, Inbred BALB C ; Receptor, Anaphylatoxin C5a ; metabolism ; Receptors, Complement ; metabolism ; Solvents ; toxicity ; Trichloroethylene ; toxicity
5.The role of C5a in adhesion properties of polymorphonuclear leukocyte to pulmonary vascular endothelial cells in burn patients with acute lung injury.
Fenglin LU ; Xihua ZHU ; Chengxiang HU ; Yunhui HUANG
Chinese Journal of Burns 2002;18(6):358-361
OBJECTIVETo explore the postburn adhesion properties of polymorphonuclear leukocyte (PMN) onto pulmonary vascular endothelial cells (PVEC) in burn patients with acute lung injury (ALI), so as to determine the role of C5a on PVEC-PMN adhesion.
METHODSMicrotubule sucking technique was employed to determine the PVEC-PMN adhesion. The myeloperoxidase (MPO) was also assayed to reflect the magnitude of PVEC-PMN adhesion.
RESULTSThe magnitude of PVEC-PMN adhesion increased and the adhesion force increased along with an increase in rh-C5a concentration. Simultaneously, the MPO activity was increased, which could be inhibited by anti-C5aR McAb in a concentration 1:104.
CONCLUSIONBoth C5a and C5aR participated in PVEC-PMN adhesion, which might be important in the pathogenesis of ALI.
Acute Disease ; Antibodies, Monoclonal ; pharmacology ; Antigens, CD ; immunology ; Burns ; blood ; complications ; Cell Adhesion ; drug effects ; Cells, Cultured ; Complement C5a ; pharmacology ; Dose-Response Relationship, Drug ; Endothelium, Vascular ; cytology ; drug effects ; Fetus ; Humans ; Lung ; Lung Diseases ; complications ; Neutrophils ; cytology ; drug effects ; enzymology ; Peroxidase ; antagonists & inhibitors ; drug effects ; metabolism ; Receptor, Anaphylatoxin C5a ; Receptors, Complement ; immunology
6.Establishment and evaluation of experimental sepsis mouse model.
Li-Yan WANG ; Ruo-Nan XU ; Gen-Cheng HAN ; Ren-Xi WANG ; Guo-Jiang CHEN ; He XIAO ; Chun-Mei HOU ; Bei-Fen SHEN ; Yan LI
Journal of Experimental Hematology 2010;18(3):766-770
After treating with chemotherapy or immunosuppressant, malignant diseases of hematopoietic system such as leukemia, malignant lymphoma and aplastic anemia usually induced severe infection such as sepsis. Sepsis which is hard to be diagnosed causes high death rate. This study was purposed to establish an experimental sepsis mouse model so as to provide a basis for pathogenesis and intervention study. A classic caecal ligation and puncture (CLP) was used to establish experimental sepsis model. ELISA was used to detect levels of C5a, IL-6, TNFalpha, and IFN-gamma. Flow Cytometry was applied to measure apoptosis of lymphocytes in thymus and mesentery. The pathologic changes of thymus and spleen were confirmed by HE staining. The results showed that almost 70%-80% mice died at 72 hours after CLP. Only approximate 20% animal survived during finite time, mice in CLP group had significant weight lose. Meanwhile large release of different inflammatory mediators which are related with sepsis (C5a, IL-6, TNF-alpha, and IFN-gamma) was observed after CLP. Apoptosis of lymphocytes in thymus and mesentery lymphonodus was enhanced markedly after CLP. Significantly pathologic injury was also observed in thymus and spleen. It is concluded that a mouse model of experimental sepsis was successfully established by caecal ligation and puncture which can well mimic the clinical symptom of sepsis. The experimental sepsis mouse model provides an excellent tool for exploring the pathogenesis and intervention ways for sepsis accompanied with complicated malignant hematological diseases in vivo.
Animals
;
Apoptosis
;
Cecum
;
injuries
;
Complement C5a
;
metabolism
;
Disease Models, Animal
;
Interferon-gamma
;
metabolism
;
Interleukin-6
;
metabolism
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Sepsis
;
metabolism
;
pathology
;
Spleen
;
pathology
;
Thymus Gland
;
pathology
;
Tumor Necrosis Factor-alpha
;
metabolism
7.Association between protective effect of Liuwei Wuling tablets against acute liver injury and its inhibitory effect on cytoplasmic translocation of high-mobility group box-1 in hepatocytes in mice.
Yangchang LEI ; Wen LI ; Pan LUO
Chinese Journal of Hepatology 2016;24(2):114-118
OBJECTIVETo investigate the effect of Liuwei Wuling tablets on the cytoplasmic translocation and release of high-mobility group box-1 (HMGB1) in hepatocytes in mice with acute live injury induced by D-galactosamine (D-GalN) and lipopolysaccharide (LPS).
METHODSA Balb/c mouse model of acute liver injury was established by intraperitoneal injection of D-GalN (400 mg/kg) and LPS (5 ug/kg). A total of 24 healthy mice were randomly and equally divided into acute liver injury control group and Liuwei Wuling tablet treatment group. The serum levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were measured in both groups at each time point within one week. Liver tissues were collected at 36 hours to perform pathological examination. The serum levels of HMGB1, tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interleukin-6 (IL-6), complement 3a (C3a), and complement 5a (C5a) were measured. Immunohistochemistry was used to determine the expression and cytoplasmic translocation of HMGB1 in hepatocytes.
RESULTSAt 6, 12, and 24 hours, the Liuwei Wuling tablet treatment group had significantly lower serum levels of ALT than the control group (225.33±181.64 U/L vs 471.17±174.72 U/L, t = 3.38, P < 0.01; 1509.53±182.51 U/L vs 7149.52±734.25 U/L, t = 25.82, P < 0.01; 162.89±86.51 U/L vs 1318.16±557.71 U/L, t = 7.09, P < 0.01), as well as significantly lower serum levels of AST than the control group (179.22±94.57 U/L vs 561.91±209.6 U/L, t = 5.76, P < 0.01; 590.92±190.92 U/L vs 2266.48±705.64 U/L, t = 7.94, P < 0.01; 231.24±87.7 U/L vs 444.32±117.01 U/L, t = 5.05, P < 0.01). The treatment group had significantly lower levels of HMGB1 than the control group at 6 and 12 hours (54.21±11.89 ng/ml vs 72.07±13.65 ng/ml, t = 3.41, P < 0.01; 49.23±5.97 ng/ml vs 68.71±13.07 ng/ml, t = 4.70, P < 0.01). The treatment group had significantly lower levels of TNF-α, IL-1β, and IL-6 than the control group at 12 hours (163.62±9.12 pg/ml vs 237.09±51.47 pg/ml, t = 4.86, P < 0.01; 15.66±13.13 pg/ml vs 37.43±18.68 pg/ml, t = 3.30, P < 0.01; 7.10±3.06 pg/ml vs 21.42±8.23 pg/ml, t = 5.65, P < 0.01). The treatment group had significantly lower levels of C3a and C5a than the control group at 12 hours (2.52±1.27 pg/ml vs 9.83±2.96 ng/ml, t = 7.86, P < 0.01; 2.16±1.03 ng/ml vs 7.23±1.55 ng/ml, t = 9.67, P < 0.01). Compared with the control group, the treatment group had significantly reduced liver inflammation and necrosis, and a significantly lower cytoplasmic translocation rate of HMGB1 in hepatocytes (38.76%±7.37% vs 8.15%±2.11%, P < 0.01).
CONCLUSIONLiuwei Wuling tablets can reduce the cytoplasmic translocation of HMGB1 in hepatocytes and relieve liver inflammation in mice with acute liver injury.
Alanine Transaminase ; blood ; Animals ; Aspartate Aminotransferases ; blood ; Complement C3a ; analysis ; Complement C5a ; analysis ; Cytoplasm ; metabolism ; Drugs, Chinese Herbal ; pharmacology ; Galactosamine ; HMGB1 Protein ; metabolism ; Hepatocytes ; drug effects ; Interleukin-1beta ; blood ; Interleukin-6 ; blood ; Lipopolysaccharides ; Liver Failure, Acute ; drug therapy ; Mice ; Mice, Inbred BALB C ; Protein Transport ; Tablets ; Tumor Necrosis Factor-alpha ; blood