1.Ehlers-Danlos syndrome VIII with novel C1R variant accompanying white matter changes
Go Hun SEO ; Yoon Myung KIM ; Byeongzu GHANG ; Gu Hwan KIM ; Beom Hee LEE
Journal of Genetic Medicine 2019;16(1):43-47
Ehlers-Danlos syndrome (EDS) VIII is an autosomal dominant inherited connective tissue disorder characterized by intractable periodontal inflammation, absence of gingiva, pretibial plaques, skin hyperextensibility, joint hypermobility, and tissue fragility with onset in the childhood or adolescence. In a recent report, heterozygous variants of the C1R or C1S related to the classical complement pathway were identified in families with history of EDS VIII. The current report describes a Korean 34-year-old female carrying a novel missense variant of C1R c.925T>G (p.Cys309Gly) and exhibiting early severe periodontitis, skin fragility, and joint hypermobility. The patient also had frontal, parietal, and temporal white matter brain lesions without definite vascular abnormalities on brain magnetic resonance imaging, which have not been surveyed meticulously in EDS VIII. Considering the genetic alteration of classic complement pathways in this condition, it is necessary to carefully observe multisystemic inflammation processes such as changes in brain white matter.
Adolescent
;
Adult
;
Brain
;
Complement C1r
;
Complement Pathway, Classical
;
Complement System Proteins
;
Connective Tissue
;
Ehlers-Danlos Syndrome
;
Female
;
Gingiva
;
Humans
;
Inflammation
;
Joint Instability
;
Magnetic Resonance Imaging
;
Periodontitis
;
Rabeprazole
;
Skin
;
White Matter
2.DNA Microarray-Based Gene Expression Profiling in Porcine Keratocytes and Corneal Endothelial Cells and Comparative Analysis Associated with Xeno-related Rejection.
Mee Kum KIM ; Joo Youn OH ; Jung Hwa KO ; Hyun Ju LEE ; Jin Ho JUNG ; Won Ryang WEE ; Jin Hak LEE ; Chung Gyu PARK ; Sang Joon KIM ; Curie AHN ; Seung Jun KIM ; Seung Yong HWANG
Journal of Korean Medical Science 2009;24(2):189-196
Porcine to rat corneal xenotransplantation resulted in severe inflammation and rejection of the corneal stroma, whereas an allograft showed mainly endothelial cell-associated rejection. We, therefore, investigated and compared the gene expression between porcine keratocytes and corneal endothelial cells. RNA was isolated from primary cultured porcine or human keratocytes and porcine corneal endothelial cells. Gene expression was comparatively analyzed after normalization with microarray method using Platinum pig 13 K oligo chip (GenoCheck Co., Ltd., Ansan, Korea). Real-time polymerase chain reaction (PCR) was performed for C1R, CCL2, CXCL6, and HLA-A in porcine keratocytes and corneal endothelial cells. As a result, upregulated expression more than 2 folds was observed in 1,162 genes of porcine keratocytes versus porcine endothelial cells. Among the immune-regulatory genes, SEMA3C, CCL2, CXCL6, F3, HLA-A, CD97, IFI30, C1R, and G1P3 were highly expressed in porcine keratocytes, compared to porcine corneal endothelial cells or human keratocytes. When measured by real-time PCR, the expression of C1R, CCL2, and HLA-A was higher in porcine keratocytes compared to that in porcine corneal endothelial cells. In conclusion, the increased expression of C1R, CCL2, and HLA-A genes in porcine keratocytes might be responsible for the stromal rejection observed in a porcine to rat corneal xenotransplantation.
Animals
;
Cells, Cultured
;
Chemokine CCL2/metabolism
;
Complement C1r/metabolism
;
Corneal Transplantation/*immunology/pathology
;
Endothelium, Corneal/*metabolism/pathology
;
*Gene Expression Profiling
;
Graft Rejection/*immunology/pathology
;
HLA-A Antigens/metabolism
;
Humans
;
Keratinocytes/*metabolism
;
Oligonucleotide Array Sequence Analysis
;
Rats
;
Reverse Transcriptase Polymerase Chain Reaction
;
Swine
;
Transplantation, Heterologous
;
Up-Regulation