1.Probiotic mixture VSL#3 prevents ulcerative colitis-associated carcinogenesis in mice and cells by regulating the inflammatory and Wnt/β-catenin pathway.
Wenbin LI ; Yanan WANG ; Chunsaier WANG ; Hongying WANG ; Yiming MA ; Hong YANG ; Xinhua ZHAO ; Xiaomin HU ; John Y KAO ; Jiaming QIAN ; Chung OWYANG ; Jingnan LI
Chinese Medical Journal 2022;135(19):2357-2359
2.Effect of Sishen Pills and its split prescriptions on Tfr/Tfh9/Tfh17 cells in colitis mice.
Zeng-Ping KANG ; Jing JIN ; Qing-Qing JIANG ; Hai-Mei ZHAO ; Shao-Min CHENG ; You-Bao ZHONG ; Duan-Yong LIU
China Journal of Chinese Materia Medica 2022;47(5):1300-1306
This study aims to investigate the regulatory effect of Sishen Pills(SSP) and its split prescriptions Ershen Pills(EP) and Wuweizi Powder(WP) on T follicular helper(Tfh) cell subset in the dextran sodium sulfate(DSS)-induced colitis mice and the mechanism. A total of 60 male SPF BALB/c mice were used, 10 of which were randomly selected as the normal group. The rest 50 were induced with 3% DSS solution for colitis modeling. After modeling, they were randomized into 5 groups: model group, SSP group, EP group, WP group, and mesalazine group. Body mass, colon mass, colon mass index, colon length, and unit colon mass index in each group were observed. After hematoxylin-eosin(HE) staining, the pathological injury of colon tissue was scored. The expression levels of molecules related to the STAT/SOCS signaling pathway in colon tissues were analyzed by Western blot. Differentiation levels of Tfh cells such as CD4~+CXCR5~+IL-9~+(Tfh9), CD4~+CXCR5~+IL-17~+(Tfh17), and CD4~+CXCR5~+Foxp3~+(Tfr) in peripheral blood of mice were detected by flow cytometry. The results showed each treatment group demonstrated significant increase in body mass and colon length, decrease in colon mass, colon mass index, unit colon mass index, and histopathological score(P<0.05, P<0.01), reduction of the expression of p-STAT3, STAT3, p-STAT6, and STAT6(P<0.05, P<0.01), rise of the expression of SOCS1 and SOCS3(P<0.05, P<0.01), decrease of Tfh9 and Tfh17 cells, and increase of Tfr cells(P<0.05, P<0.01) compared with the model group. These results indicated that SSP and the split EP and WP may alleviate ulcerative colitis by inhibiting the activation of STAT/SOCS signaling pathway and regulating the balance of Tfr/Tfh9/Tfh17 cells.
Animals
;
Colitis/genetics*
;
Colitis, Ulcerative/metabolism*
;
Male
;
Mice
;
Mice, Inbred BALB C
;
Prescriptions
;
T-Lymphocytes, Regulatory
3.Progress on Regulation of NLRP3 Inflammasome by Chinese Medicine in Treatment of Ulcerative Colitis.
Chinese journal of integrative medicine 2023;29(8):750-760
Ulcerative colitis (UC) is a chronic, non-specific intestinal disease that not only affects the quality of life of patients and their families but also increases the risk of colorectal cancer. The nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing protein 3 (NLRP3) inflammasome is an important component of inflammatory response system, and its activation induces an inflammatory cascade response that is involved in the development and progression of UC by releasing inflammatory cytokines, damaging intestinal epithelial cells, and disrupting the intestinal mucosal barrier. Chinese medicine (CM) plays a vital role in the prevention and treatment of UC and is able to regulate NLRP3 inflammasome. Many experimental studies on the regulation of NLRP3 inflammasome mediated by CM have been carried out, demonstrating that CM formulae with main effects of clearing heat, detoxifying toxicity, drying dampness, and activating blood circulation. Flavonoids and phenylpropanoids can effectively regulate NLRP3 inflammasome. Other active components of CM can interfere with the process of NLRP3 inflammasome assembly and activation, leading to a reduction in inflammation and UC symptoms. However, the reports are relatively scattered and lack systematic reviews. This paper reviews the latest findings regarding the NLRP3 inflammasome activation-related pathways associated with UC and the potential of CM in treating UC through modulation of NLRP3 inflammasome. The purpose of this review is to explore the possible pathological mechanisms of UC and suggest new directions for development of therapeutic tools.
Humans
;
Inflammasomes/metabolism*
;
Colitis, Ulcerative/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Medicine, Chinese Traditional
;
Quality of Life
;
Colitis
4.Deficiency in glutathione synthesis and reduction contributes to the pathogenesis of colitis-related liver injury.
Liangliang WANG ; Ruyue HAN ; Kaihong ZANG ; Pei YUAN ; Hongyan QIN
Journal of Central South University(Medical Sciences) 2022;47(3):271-279
OBJECTIVES:
Liver disease is the most common extra-intestinal manifestation of ulcerative colitis (UC), but the underlying pathogenesis is still not clarified. It is well accepted that the occurrence of UC-related liver disease has close correlation with immune activation, intestinal bacterial liver translocation, inflammatory cytokine storm, and the disturbance of bile acid circulation. The occurrence of UC-related liver disease makes the therapy difficult, therefor study on the pathogenesis of UC-related liver injury is of great significance for its prevention and treatment. Glutathione (GSH) shows multiple physiological activities, such as free radical scavenging, detoxification metabolism and immune defense. The synthesis and the oxidation-reduction all contribute to GSH antioxidant function. It is reported that the deficiency in hepatic GSH antioxidant function participates in multiple liver diseases, but whether it participates in the pathogenesis of UC-related liver injury is still not clear. This study aims to investigate the feature and underlying mechanism of GSH synthesis and oxidation-reduction function during the development of UC, which will provide useful information for the pathogenesis study on UC-related liver injury.
METHODS:
UC model was induced by 2,4,6-trinitrobenzenesulfonic acid (TNBS)-ethanol solution (5 mg/0.8 mL per rat, 50% ethanol) via intra-colonic administration in rats, and the samples of serum, liver, and colon tissue of rats were collected at the 3rd, 5th, and 7th days post TNBS. The severity degree of colitis was evaluated by measuring the disease activity index, colonic myeloperoxidase activity, and histopathological score, and the degree of liver injury was evaluated by histopathological score and the serum content of alanine aminotransferase. Spearman correlation analysis was also conducted between the degree of colonic lesions and index of hepatic histopathological score as well as serum aspartate aminotransferase level to clarify the correlation between liver injury and colitis. To evaluate the hepatic antioxidant function of GSH in UC rats, hepatic GSH content, enzyme activity of GSH peroxidase (GSH-Px), and GSH reductase (GR) were determined in rats at the 3rd, 5th, and 7th days post TNBS, and the protein expressions of glutamine cysteine ligase (GCL), GSH synthase, GSH-Px, and GR in the liver of UC rats were also examined by Western blotting.
RESULTS:
Compared with the control, the disease activity index, colonic myeloperoxidase activity, and histopathological score were all significantly increased at the 3rd, 5th, and 7th days post TNBS (all P<0.01), the serum aspartate aminotransferase level and hepatic histopathologic score were also obviously elevated at the 7th day post TNBS (all P<0.05). There was a significant positive correlation between the degree of liver injury and the severity of colonic lesions (P=0.000 1). Moreover, compared with the control, hepatic GSH content and the activity of GSH-Px and GR were all significantly decreased at the 3rd and 5th days post TNBS (P<0.05 or P<0.01), and the protein expressions of GCL, GSH-Px, and GR were all obviously down-regulated at the 3rd, 5th, and 7th days post TNBS (P<0.05 or P<0.01).
CONCLUSIONS
There is a significant positive correlation between the degree of liver injury and the severity of colonic lesions, and the occurrence of reduced hepatic GSH synthesis and decreased GSH reduction function is obviously earlier than that of the liver injury in UC rats. The reduced hepatic expression of enzymes that responsible for GSH synthesis and reduction may contribute to the deficiency of GSH synthesis and oxidation-reduction function, indicating that the deficiency in GSH antioxidant function may participate in the pathogenesis of UC related liver injury.
Animals
;
Antioxidants
;
Aspartate Aminotransferases
;
Colitis/chemically induced*
;
Colitis, Ulcerative/metabolism*
;
Colon/pathology*
;
Glutathione/biosynthesis*
;
Liver/metabolism*
;
Peroxidase/metabolism*
;
Rats
;
Trinitrobenzenesulfonic Acid
5.Role of secondary lymphoid tissue chemokine in the pathogenesis of rat ulcerative colitis.
Bu-jun GE ; Xi-mei CHEN ; Chang-qing YANG ; Jian WU
Chinese Journal of Gastrointestinal Surgery 2008;11(6):561-564
OBJECTIVETo investigate the effect of secondary lymphoid tissue chemokine (SLC) on experimental colon lesions in rats with ulcerative colitis.
METHODSSixty Sprague-Dawley rats were randomly divided into control group, model group and SLC intervention group. Colonic mucosal lesions of different groups were observed with HE staining for inflammation and lymphocyte homing situation. Cytokine IL-2 and IL-6 levels were measured by ABC-ELISA. Semi-quantitative RT-PCR was used to examine the colonic SLC expression.
RESULTSIntestinal inflammation score and colonic cytokine levels were significantly different among three groups (P<0.05, P<0.01). Abnormal lymphocyte homing phenomenon under colonic mucosa was found in the model group and the intervention group. SLC mRNA expression of the model and intervention groups increased significantly compared with the control group (0.846+/-0.047, 0.768+/-0.135 vs 0.312+/-0.112, P<0.01). However, there was no significant difference between model group and intervention group.
CONCLUSIONSSLC may play an important role in experimental colonic mucosal inflammation in rats with ulcerative colitis. Blockade of SLC may be one of effective ways in reducing colonic mucosal inflammation.
Animals ; Chemokine CCL21 ; metabolism ; Colitis, Ulcerative ; metabolism ; physiopathology ; Female ; Inflammation ; Interleukin-2 ; metabolism ; Interleukin-6 ; metabolism ; Rats ; Rats, Sprague-Dawley
6.Mechanism of tryptanthrin in treatment of ulcerative colitis in mice based on serum metabolomics.
Jie ZHU ; Bao-Long HOU ; Wen CHENG ; Ting WANG ; Zheng WANG ; Yan-Ni LIANG
China Journal of Chinese Materia Medica 2023;48(8):2193-2202
This study aims to explore the effect of tryptanthrin on potential metabolic biomarkers in the serum of mice with ulcerative colitis(UC) induced by dextran sulfate sodium(DSS) based on liquid chromatography-mass spectrometry(LC-MS) and predict the related metabolic pathways. C57BL/6 mice were randomly assigned into a tryptanthrin group, a sulfasalazine group, a control group, and a model group. The mouse model of UC was established by free drinking of 3% DSS solution for 11 days, and corresponding drugs were adminsitrated at the same time. The signs of mice were observed and the disease activity index(DAI) score was recorded from the first day. Colon tissue samples were collected after the experiment and observed by hematoxylin-eosin(HE) staining. The levels of interleukin-4(IL-4), interleukin-10(IL-10), tumor necrosis factor-α(TNF-α), interleukin-6(IL-6), and interleukin-8(IL-8) in the serum were measured by enzyme linked immunosorbent assay(ELISA). The serum samples were collected from 6 mice in each group for widely targeted metabolomics. The metabolic pathways were enriched by MetaboAnalyst 5.0. The results showed that compared with the model group, tryptanthrin treatment decreased the DAI score(P<0.05), alleviated the injury of the colon tissue and the infiltration of inflammatory cells, lowered the levels of proinflammatory cytokines, and elevated the levels of anti-inflammatory cytokines in the serum. The metabolomic analysis revealed 28 differential metabolites which were involved in 3 metabolic pathways including purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. Tryptanthrin may restore the metabolism of the mice with UC induced by DSS to the normal level by regulating the purine metabolism, arachidonic acid metabolism, and tryptophan metabolism. This study employed metabolomics to analyze the mechanism of tryptanthrin in the treatment of UC, providing an experimental basis for the utilization and development of tryptanthrin.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Tryptophan
;
Arachidonic Acid/metabolism*
;
Mice, Inbred C57BL
;
Colon
;
Cytokines/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Interleukin-6/metabolism*
;
Metabolomics
;
Purines/therapeutic use*
;
Dextran Sulfate/metabolism*
;
Disease Models, Animal
;
Colitis/chemically induced*
7.Effect of electro-acupuncture on metabolites in the cerebral cortex of ulcerative colitis rats based on Pi/Wei-brain related theory.
Yang YANG ; Ji-lan ZHAO ; Tian-shu HOU ; Xiao-xia HAN ; Zheng-yu ZHAO ; Xiao-hua PENG ; Qiao-Feng WU
Chinese Journal of Integrated Traditional and Western Medicine 2014;34(10):1207-1211
OBJECTIVETo study the effect of electro-acupuncture (EA) at points along Foot Yangming Channel on metabolite of ulcerative colitis (UC) rats' cerebral cortex and to identify key metabolites by referring to Pi/Wei-brain related theory in Chinese medicine (CM).
METHODSThe UC rat model was set up by dextran sulfate sodium (DSS) method. Male SD rats were randomly divided into the model group and the EA group, 13 in each group. Another 13 rats were recruited as the blank control group. Rats in the blank control group and the model group received no EA. EA was performed at Zusanli (ST36), Shangjuxu (ST37), and Tianshu (ST25) for 5 days by using disperse-dense wave. Then all rats were sacrificed. Their recto-colon and the ileocecal junction were pathomorphologically observed by light microscope and transmission electron microscope (TEM). Cerebral cortexes were extracted. Water-soluble and lipid-soluble brain tissue metabolites were respectively extracted for metabolic research using 1H nuclear magnetic resonance (1H-NMR).
RESULTSEA could obviously improve the general condition of UC model rats, decrease the value of DAI, reduce the infiltration of inflammatory cells in the intestinal tract, stabilize structures such as mitochondria, endoplasmic reticulum and so on (P <0.05). 1HNMR analysis showed that in the model group, contents of glutamic acid, cholesterol, very low density lipoproein (VLDL) in the pallium obviously decreased, while alanine and low density lipoprotein (LDL) significantly increased. After EA, levels of lactic acid, glutamic acid, total cholesterol (TC), and VLDL all increased, and levels of alanine and LDL decreased. All indices were approximate to those of the blank control group.
CONCLUSIONEA at Foot Yangming channel was found to have some effect on metabolites in the brain tissue of UC model rats, which had specific metabonomic material basis and mechanism based on the Pi/Wei-brain related theory.
Acupuncture Points ; Animals ; Cerebral Cortex ; metabolism ; Colitis, Ulcerative ; Electroacupuncture ; Lipids ; Male ; Rats, Sprague-Dawley
8.The Role of Barrier Dysfunction and Change of Claudin Expression in Inflammatory Bowel Disease.
Gut and Liver 2015;9(6):699-700
No abstract available.
Animals
;
Apoptosis/*physiology
;
Claudins/*metabolism
;
Colitis/*physiopathology
;
Intestinal Mucosa/*physiopathology
;
Mannose-Binding Lectin/*immunology
9.A Case of Coffee Enema-Induced Colitis.
Jin Woo CHOI ; Yun Ju JO ; Sung Cheol KIM ; Seok Jin MYUNG ; Han Hyo LEE ; Moon Hee SONG ; Seong Hwan KIM ; Young Sook PARK ; Jong Eun JOO ; Sung Won PARK
Korean Journal of Gastrointestinal Endoscopy 2005;31(6):427-431
A coffee enema which has been suggested as a part of a cancer treatment, has been misused as a treatment for obesity and constipation among the general population. Its proponents claim that caffeine is absorbed in the colon, which leads to vasodilatation in the liver and stimulation of the hepatocellular function to detoxify the products of the tumor cell metabolism. However, the clinical efficacy of the anti-cancer effect of coffee enemas has not been demonstrated. Many side effects of coffee enemas have been reported. These include severe electrolyte imbalance, polymicrobial enteric septicemia, and even death. We experienced a patient who presented with abdominal pain and a bloody stool after receiving a coffee enema to relieve constipation. We report this case of coffee enema-induced colitis with a review of the relevant.
Abdominal Pain
;
Caffeine
;
Coffee*
;
Colitis*
;
Colon
;
Constipation
;
Enema
;
Humans
;
Liver
;
Metabolism
;
Obesity
;
Sepsis
;
Vasodilation
10.Effects of astragaloside Ⅳ on inflammatory response and percentage of peripheral blood Th17 cells in mice with ulcerative colitis.
Sheng-Yan XU ; Xiang-Dang HU ; Zong-Liang YANG ; An LIU ; Yong-Heng HE ; Hai-Yan LU
China Journal of Chinese Materia Medica 2022;47(2):469-475
This study aimed to investigate the anti-inflammatory effect of astragaloside Ⅳ in mice with ulcerative colitis(UC) and its effect on the percentage of peripheral blood T helper(Th17) cells. Following the establishment of UC mouse model with 2% sodium dextran sulfate(DSS), mice in the positive control group and low-and high-dose astragaloside Ⅳ groups were treated with corresponding drugs by gavage. Disease activity index(DAI) was calculated, and serum interleukin-17(IL-17), tumor necrosis factor-α(TNF-α), and transforming growth factor-β(TGF-β) levels were assayed by ELISA. The pathological changes in colon tissue were observed by HE staining, and Th17/regulatory T cells(Treg) ratio in the peripheral blood was determined by flow cytometry. Western blot was conducted for detecting the relative protein expression levels of forkhead box protein P3(Foxp3) and retinoic acid-related orphan nuclear receptor γT(ROR-γt). The findings demonstrated that in normal mice, the colonic structure was intact. The goblet cells were not reduced and the glands were neatly arranged, with no mucosal erosion, bleeding, or positive cell infiltration. In the model group, the colonic mucosal structure was seriously damaged, manifested as disordered arrangement or missing of glands, vascular dilatation, congestion, and massive inflammatory cell infiltration. The pathological injury of colon tissue was alleviated to varying degrees in drug treatment groups. Compared with the normal group, the model group exhibited elevated percentage of Th17 cells, increased IL-17 and TNF-α content, up-regulated relative ROR-γt protein expression, lowered TGF-β, reduced percentage of Treg cells, and down-regulated relative Foxp3 protein expression. The comparison with the model group showed that DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the positive control group, low-dose astragaloside Ⅳ group, and high-dose astragaloside Ⅳ group were decreased, while TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression were increased. The DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, and relative ROR-γt protein expression in the low-dose astragaloside Ⅳ group were higher than those in the positive control group, whereas the content of TGF-β, percentage of Treg cells, and relative Foxp3 protein expression were lower. DAI score, pathological score, percentage of Th17 cells, IL-17 and TNF-α content, relative ROR-γt protein expression in the high-dose astragaloside Ⅳ group declined in contrast to those in the low-dose astragaloside Ⅳ group, while the TGF-β content, percentage of Treg cells, and relative Foxp3 protein expression rose. There was no significant difference between the positive control group and the high-dose astragaloside Ⅳ group. Astragaloside Ⅳ is able to inhibit inflammatory response and diminish the percentage of Th17 cells in mice with UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Mice
;
Saponins/pharmacology*
;
T-Lymphocytes, Regulatory
;
Th17 Cells
;
Triterpenes/pharmacology*