1.Nodakenin ameliorates TNBS-induced experimental colitis in mice by inhibiting pyroptosis of intestinal epithelial cells.
Ju HUANG ; Lixia YIN ; Minzhu NIU ; Zhijun GENG ; Lugen ZUO ; Jing LI ; Jianguo HU
Journal of Southern Medical University 2025;45(2):261-268
OBJECTIVES:
To investigate the therapeutic mechanism of nodakenin for Crohn's disease (CD)-like colitis in mice.
METHODS:
Using a colonic organoid model with lipopolysaccharide (LPS)- and ATP-induced pyroptosis, we investigated the effects of nodakenin on pyroptosis, intestinal barrier function and inflammatory response by detecting key pyroptosis-regulating factors and assessing changes in permeability and pro-inflammatory factors. In a mouse model of 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced CD-like colitis, the therapeutic effect of nodakenin was evaluated by measuring changes in body weight, DAI score, colonic histopathologies, inflammation score, intestinal barrier function and intestinal epithelial cell pyroptosis. The mechanism of nodakenin protection against pyroptosis of intestinal epithelial cells was explored using network pharmacology analysis and in vivo and in vitro experiments.
RESULTS:
In LPS- and ATP-induced colonic organoids, treatment with nodakenin significantly inhibited the expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11, improved intestinal FITC-dextran (FD4, 4000) permeability, and decreased the levels of IL-1β and IL-18. In the mouse model of TNBS-induced colitis, nodakenin treatment significantly alleviated weight loss, reduced DAI score, inflammatory cell infiltration and inflammation score, and decreased serum FD4 and I-FABP levels and bacteria translocation to the mesenteric lymph nodes, spleen and liver. The mice with nodakenin treatment had also lowered expressions of NLRP3, GSDMD-N, cleaved caspase-1 and caspase-11 in the intestinal mucosa. Network pharmacology analysis suggested that the inhibitory effect of nodakenin on colitis was associated with the PI3K/Akt pathway. In both the colonic organoid model and mouse models of colitis, nodakenin effectively inhibited the activation of the PI3K/Akt pathway, and the application of IGF-1, a PI3K/Akt pathway activator, strongly attenuated the protective effect of nodakenin against intestinal epithelial cell pyroptosis and intestinal barrier dysfunction.
CONCLUSIONS
Nodakenin protects intestinal barrier function and alleviates CD-like colitis in mice at least partly by inhibiting PI3K/Akt signaling to reduce intestinal epithelial cell pyroptosis.
Animals
;
Pyroptosis/drug effects*
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Colitis/drug therapy*
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/cytology*
;
Disease Models, Animal
;
Coumarins/pharmacology*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Crohn Disease/drug therapy*
2.Pinostrobin targets the PI3K/AKT/CCL2 axis in intestinal epithelial cells to inhibit intestinal macrophage infiltration and alleviate dextran sulfate sodium-induced colitis in mice.
Keni ZHANG ; Tong QIAO ; Lin YIN ; Ju HUANG ; Zhijun GENG ; Lugen ZUO ; Jianguo HU ; Jing LI
Journal of Southern Medical University 2025;45(10):2199-2209
OBJECTIVES:
To investigate the mechanism through which pinostrobin (PSB) alleviates dextran sulfate sodium (DSS)-induced colitis in mice.
METHODS:
C57BL/6 mice were randomized into control group, DSS model group, and PSB intervention (30, 60, and 120 mg/kg) groups. Colitis severity of the mice was assessed by examining body weight changes, disease activity index (DAI), colon length, and histopathology. The expressions of tight junction proteins ZO-1 and claudin-1 in the colon tissues were examined using immunofluorescence staining, and macrophage infiltration and polarization were analyzed with flow cytometry. ELISA and RT-qPCR were used for detecting the expressions of inflammatory factors (TNF‑α and IL-6) and chemokines (CCL2, CXCL10, and CX3CL1) in the colon tissues, and PI3K/AKT phosphorylation levels were analyzed with Western blotting. In cultured Caco-2 and RAW264.7 cells, the effect of PSB on CCL2-mediated macrophage migration was assessed using Transwell assay. Network pharmacology analysis was performed to predict the key pathways that mediate the therapeutic effect of PSB.
RESULTS:
In DSS-induced mouse models, PSB at 60 mg/kg optimally alleviated colitis, shown by reduced weight loss and DAI scores and increased colon length. PSB treatment significantly upregulated ZO-1 and claudin-1 expressions in the colon tissues, inhibited colonic macrophage infiltration, and promoted the shift of macrophage polarization from M1 to M2 type. In cultured intestinal epithelial cells, PSB significantly inhibited PI3K/AKT phosphorylation and suppressed chemokine CCL2 expression. PSB treatment obviously blocked CCL2-mediated macrophage migration of RAW264.7 cells, which could be reversed by exogenous CCL2. Network pharmacology analysis and rescue experiments confirmed PI3K/AKT and CCL2 signaling as the core targets of PSB.
CONCLUSIONS
PSB alleviates DSS-induced colitis in mice by targeting intestinal epithelial PI3K/AKT signaling, reducing CCL2 secretion, and blocking macrophage chemotaxis and migration, highlighting the potential of PSB as a novel natural compound for treatment of inflammatory bowel disease.
Animals
;
Mice
;
Mice, Inbred C57BL
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Colitis/drug therapy*
;
Dextran Sulfate
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Macrophages
;
Chemokine CCL2/metabolism*
;
Humans
;
Signal Transduction/drug effects*
;
Caco-2 Cells
;
RAW 264.7 Cells
;
Epithelial Cells/drug effects*
;
Intestinal Mucosa/metabolism*
3.Hypaphorine alleviates Crohn's disease-like colitis in mice by inhibiting intestinal epithelial inflammatory response and protecting intestinal barrier function.
Qingqing HUANG ; Jingjing YANG ; Xuening JIANG ; Wenjing ZHANG ; Yu WANG ; Lugen ZUO ; Lian WANG ; Yueyue WANG ; Xiaofeng ZHANG ; Xue SONG ; Jianguo HU
Journal of Southern Medical University 2025;45(11):2456-2465
OBJECTIVES:
To investigate the effect of hypaphorine (HYP) on Crohn's disease (CD)‑like colitis in mice and its molecular mechanism.
METHODS:
Thirty male C57BL/6J mice were equally randomized into WT, TNBS, and HYP groups, and in the latter two groups, mouse models of CD-like colitis were established using TNBS with daily gavage of 15 mg/kg HYP or an equivalent volume of saline. The treatment efficacy was evaluated by assessing the disease activity index (DAI), body weight changes, colon length and histopathology. The effect of HYP was also tested in a LPS-stimulated Caco-2 cell model mimicking intestinal inflammation by evaluating inflammatory responses and barrier function of the cells using qRT-PCR and immunofluorescence staining. GO and KEGG analyses were conducted to explore the therapeutic mechanism of HYP, which was validated in both the cell and mouse models using Western blotting.
RESULTS:
In the mouse models of CD-like colitis, HYP intervention obviously alleviated colitis as shown by significantly reduced body weight loss, colon shortening, DAI and inflammation scores, and expressions of pro-inflammatory factors in the colon tissues. HYP treatment also significantly increased the TEER values, reduced bacterial translocation to the mesenteric lymph nodes, liver, and spleen, lowered serum levels of I-FABP and FITC-dextran, increased the number of colonic tissue cup cells, and upregulated colonic expressions of MUC2 and tight junction proteins (claudin-1 and ZO-1) in the mouse models. In LPS-stimulated Caco-2 cells, HYP treatment significantly inhibited the expressions of pro-inflammatory factors and increased the expressions of tight junction proteins. Western blotting showed that HYP downregulated the expressions of the key proteins in the TLR4/MyD88 signaling pathway in both the in vitro and in vivo models.
CONCLUSIONS
HYP alleviates CD-like colitis in mice possibly by suppressing intestinal epithelial inflammation and improving gut barrier function.
Animals
;
Male
;
Mice, Inbred C57BL
;
Crohn Disease/drug therapy*
;
Mice
;
Humans
;
Caco-2 Cells
;
Intestinal Mucosa/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Inflammation
;
Toll-Like Receptor 4/metabolism*
;
Myeloid Differentiation Factor 88/metabolism*
;
Intestinal Barrier Function
4.Compatibility of cold herb CP and hot herb AZ in Huanglian Ganjiang decoction alleviates colitis mice through M1/M2 macrophage polarization balance via PDK4-mediated glucose metabolism reprogramming.
Yanyang LI ; Chang LIU ; Yi WANG ; Peiqi CHEN ; Shihua XU ; Yequn WU ; Lingzhi REN ; Yang YU ; Lei YANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(10):1183-1194
Ulcerative colitis (UC) is a chronic and non-specific inflammatory bowel disease (IBD). Huanglian Ganjiang decoction (HGD), derived from ancient book Beiji Qianjin Yao Fang, has demonstrated efficacy in treating UC patients traditionally. Previous research established that the compatibility of cold herb Coptidis Rhizoma + Phellodendri Chinensis Cortex (CP) and hot herb Angelicae Sinensis Radix + Zingiberis Rhizoma (AZ) in HGD synergistically improved colitis mice. This study investigated the compatibility mechanisms through which CP and AZ regulated inflammatory balance in colitis mice. The experimental colitis model was established by administering 3% dextran sulphate sodium (DSS) to mice for 7 days, followed by CP, AZ and CPAZ treatment for an additional 7 days. M1/M2 macrophage polarization levels, glucose metabolites levels and pyruvate dehydrogenase kinase 4 (PDK4) expression were analyzed using flow cytometry, Western blot, immunofluorescence and targeted glucose metabolomics. The findings indicated that CP inhibited M1 macrophage polarization, decreased inflammatory metabolites associated with tricarboxylic acid (TCA) cycle, and suppressed PDK4 expression and pyruvate dehydrogenase (PDH) (Ser-293) phosphorylation level. AZ enhanced M2 macrophage polarization, increased lactate axis metabolite lactate levels, and upregulated PDK4 expression and PDH (Ser-293) phosphorylation level. TCA cycle blocker AG-221 and adeno-associated virus (AAV)-PDK4 partially negated CP's inhibition of M1 macrophage polarization. Lactate axis antagonist oxamate and PDK4 inhibitor dichloroacetate (DCA) partially reduced AZ's activation of M2 macrophage polarization. In conclusion, the compatibility of CP and AZ synergistically alleviated colitis in mice through M1/M2 macrophage polarization balance via PDK4-mediated glucose metabolism reprogramming. Specifically, CP reduced M1 macrophage polarization by restoration of TCA cycle via PDK4 inhibition, while AZ increased M2 macrophage polarization through activation of PDK4/lactate axis.
Animals
;
Drugs, Chinese Herbal/chemistry*
;
Mice
;
Macrophages/immunology*
;
Glucose/metabolism*
;
Pyruvate Dehydrogenase Acetyl-Transferring Kinase/genetics*
;
Male
;
Mice, Inbred C57BL
;
Humans
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Colitis, Ulcerative/drug therapy*
;
Metabolic Reprogramming
5.Effect of Afzelin on 2,4,6-Trinitrobenzene Sulfonic Acid-Induced Colitis in Mice.
Zhi-Jun GENG ; Li-Xia YIN ; Min-Zhu NIU ; Jing-Jing YANG ; Xiao-Feng ZHANG ; Jing LI
Acta Academiae Medicinae Sinicae 2025;47(2):207-218
Objective To investigate the role and mechanism of afzelin(AFZ)in treating Crohn's disease-like colitis.Methods A mouse model of 2,4,6-trinitrobenzene sulfonic acid-induced colitis was established to assess the effect of AFZ on experimental colitis in vivo.A Caco-2 cell model of tumor necrosis factor(TNF)-α-induced inflammation was established to evaluate the effects of AFZ on the intestinal barrier function,intestinal epithelial cell apoptosis,and mitochondrial function in vitro.The animal and cell experiments were performed to validate the regulatory role of the adenosine monophosphate-activated protein kinase(AMPK)/silent information regulater 1(SIRT1)/peroxisome proliferator-activated receptor gamma coactivator(PGC)-1α pathway in the treatment of colitis with AFZ.Results AFZ reduced the disease activity index(P=0.003),weight loss(P<0.001),colon shortening(P<0.001),inflammation score(P=0.002),pro-inflammatory cytokine release(interleukin-6:P<0.001;TNF-α:P=0.010),and intestinal barrier permeability(fluorescein isothiocyanate dextran 4:P<0.001;intestinal-type fatty acid-binding protein:P=0.013).Meanwhile,AFZ increased the colonic transepithelial electric resistance(P=0.001),reduced bacterial translocation(P<0.001),and promoted the localization and up-regulated the expression of tight junction proteins [zonula occluden-1(P=0.005) and Claudin-1(P=0.024)].AFZ exerted a protective effect on the Caco-2 cells exposed to TNF-α in terms of intestinal epithelial cell permeability(P=0.017),transepithelial electric resistance(P=0.014),and tight junction protein[zonula occluden-1(P=0.014) and Claudin-1(P=0.006)] localization and expression.Furthermore,the cell and animal experiments confirmed that AFZ reduced the percentage of apoptosis(P<0.001,P=0.013)and the expression of cleaved-caspase 3(P=0.028,P=0.004)and Bax(P=0.004,P=0.020),and upregulated the Bcl2(P=0.020,P=0.006)level in intestinal epithelial cells.Additionally,AFZ increased the number of mitochondria,mitochondrial membrane potential,and copy number of mitochondrial DNA(P=0.007)in intestinal epithelial cells,while enhancing the activities of mitochondrial respiratory chain complex Ⅰ(P=0.005)and complex Ⅳ(P=0.001).The activation of the AMPK/SIRT1/PGC-1α pathway was involved in the protective effects of AFZ on mitochondrial function and apoptosis in intestinal epithelial cells.Conclusion AFZ alleviates mitochondrial dysfunction and apoptosis in intestinal epithelial cells by activating the AMPK/SIRT1/PGC-1α pathway,thereby ameliorating intestinal barrier dysfunction and experimental colitis.
Animals
;
Colitis/drug therapy*
;
Humans
;
Caco-2 Cells
;
Mice
;
Trinitrobenzenesulfonic Acid
;
Apoptosis/drug effects*
;
Disease Models, Animal
;
AMP-Activated Protein Kinases/metabolism*
;
Sirtuin 1/metabolism*
6.Asperosaponin VI alleviates TNBS-induced Crohn's disease-like colitis in mice by reducing intestinal epithelial cell apoptosis via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Minzhu NIU ; Lixia YIN ; Ting DUAN ; Ju HUANG ; Jing LI ; Zhijun GENG ; Jianguo HU ; Chuanwang SONG
Journal of Southern Medical University 2024;44(12):2335-2346
OBJECTIVES:
To investigate the effects of asperosaponin VI (AVI) on intestinal epithelial cell apoptosis and intestinal barrier function in a mouse model of Crohn's disease (CD)-like colitis and explore its mechanisms.
METHODS:
Male C57BL/6 mice with TNBS-induced CD-like colitis were treated with saline or AVI (daily dose 150 mg/kg) by gavage for 6 days. The changes in body weight, colon length, DAI scores, and colon pathologies of the mice were observed, and the expressions of inflammatory factors and tight injunction proteins were detected using ELISA and RT-qPCR. The effects of AVI on barrier function and apoptosis of mouse intestinal epithelial cells and TNF‑α‑treated Caco-2 cells were analyzed using immunofluorescence staining, TUNEL assay, and Western blotting. Network pharmacology, TUNEL assay, and Western blotting were performed to explore and validate the therapeutic mechanisms of AVI for CD.
RESULTS:
In the mouse models of CD-like colitis, AVI significantly improved body weight loss, colon shortening and DAI and tissue inflammation scores, alleviated intestinal villi and goblet cell injuries, and lowered the expressions of inflammatory factors. AVI treatment significantly reduced the loss of tight junction proteins and apoptosis in both mouse intestinal epithelial cells and TNF‑α-stimulated Caco-2 cells. KEGG enrichment pathway analysis suggested that the therapeutic effect of AVI on CD was associated with inhibition of PI3K/AKT/NF-κB pathway activation, which was confirmed by lowered expressions of p-PI3K, p-AKT, and p-p65 in AVI-treated mouse models and Caco-2 cells. In Caco-2 cells, Recilisib significantly blocked the inhibitory effect of AVI on the PI3K/AKT/NF-κB pathway and TNF-α-induced apoptosis, and AKT1 knockdown experiment confirmed the role of the PI3K/AKT pathway for mediating the activation of downstream NF-κB signaling.
CONCLUSIONS
AVI can improve TNBS-induced CD-like colitis in mice by reducing intestinal epithelial cell apoptosis and intestinal barrier damage via inhibiting the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Saponins/therapeutic use*
;
Mice
;
Crohn Disease/metabolism*
;
Apoptosis/drug effects*
;
Signal Transduction/drug effects*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice, Inbred C57BL
;
Male
;
Humans
;
Caco-2 Cells
;
Phosphatidylinositol 3-Kinases/metabolism*
;
NF-kappa B/metabolism*
;
Colitis/drug therapy*
;
Disease Models, Animal
;
Epithelial Cells/drug effects*
;
Trinitrobenzenesulfonic Acid
;
Intestinal Mucosa/drug effects*
;
Tumor Necrosis Factor-alpha/metabolism*
7.Platycodon grandiflorus polysaccharide regulates colonic immunity through mesenteric lymphatic circulation to attenuate ulcerative colitis.
Yang LIU ; Yahui DONG ; Wei SHEN ; Jiahui DU ; Quanwei SUN ; Ye YANG ; Dengke YIN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):263-278
Platycodon grandiflorus polysaccharide (PGP) is one of the main components of P. grandiflorus, but the mechanism of its anti-inflammatory effect has not been fully elucidated. The aim of this study was to evaluate the therapeutic effect of PGP on mice with dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) and explore the underlying mechanisms. The results showed that PGP treatment inhibited the weight loss of DSS-induced UC mice, increased colon length, and reduced DAI, spleen index, and pathological damage within the colon. PGP also reduced the levels of pro-inflammatory cytokines and inhibited the enhancement of oxidative stress and MPO activity. Meanwhile, PGP restored the levels of Th1, Th2, Th17, and Treg cell-related cytokines and transcription factors in the colon to regulate colonic immunity. Further studies revealed that PGP regulated the balance of colonic immune cells through mesenteric lymphatic circulation. Taken together, PGP exerts anti-inflammatory and anti-oxidant effect and regulates colonic immunity to attenuate DSS-induced UC through mesenteric lymphatic circulation.
Animals
;
Mice
;
Colitis, Ulcerative/drug therapy*
;
Platycodon
;
Colon/pathology*
;
Cytokines
;
Anti-Inflammatory Agents/therapeutic use*
;
Polysaccharides/therapeutic use*
;
Dextran Sulfate
;
Disease Models, Animal
;
Colitis/chemically induced*
;
Mice, Inbred C57BL
10.Anemoside B4 regulates fatty acid metabolism reprogramming in mice with colitis-associated cancer.
Xin YANG ; Jing JIA ; Xin-Xu XIE ; Meng-Qiang WAN ; Yu-Lin FENG ; Ying-Ying LUO ; Hui OUYANG ; Jun YU
China Journal of Chinese Materia Medica 2023;48(9):2325-2333
The study aimed to investigate the effect of anemoside B4(B4) on fatty acid metabolism in mice with colitis-associated cancer(CAC). The CAC model was established by azoxymethane(AOM)/dextran sodium sulfate(DSS) in mice. Mice were randomly divided into a normal group, a model group, and low-, medium-, and high-dose anemoside B4 groups. After the experiment, the length of the mouse colon and the size of the tumor were measured, and the pathological alterations in the mouse colon were observed using hematoxylin-eosin(HE) staining. The slices of the colon tumor were obtained for spatial metabolome analysis to analyze the distribution of fatty acid metabolism-related substances in the tumor. The mRNA levels of SREBP-1, FAS, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 were determined by real-time quantitative PCR(RT-qPCR). The results revealed that the model group showed decreased body weight(P<0.05) and colon length(P<0.001), increased number of tumors, and increased pathological score(P<0.01). Spatial metabolome analysis revealed that the content of fatty acids and their derivatives, carnitine, and phospholipid in the colon tumor was increased. RT-qPCR results indicated that fatty acid de novo synthesis and β-oxidation-related genes, such as SREBP-1, FASN, ACCα, SCD-1, ACOX, UCP-2, and CPT-1 mRNA expression levels increased considerably(P<0.05, P<0.001). After anemoside B4 administration, the colon length increased(P<0.01), and the number of tumors decreased in the high-dose anemoside B4 group(P<0.05). Additionally, spatial metabolome analysis showed that anemoside B4 could decrease the content of fatty acids and their derivatives, carnitine, and phospholipids in colon tumors. Meanwhile, anemoside B4 could also down-regulate the expression of FASN, ACCα, SCD-1, PPARα, ACOX, UCP-2, and CPT-1 in the colon(P<0.05, P<0.01, P<0.001). The findings of this study show that anemoside B4 may inhibit CAC via regulating fatty acid metabolism reprogramming.
Mice
;
Animals
;
Sterol Regulatory Element Binding Protein 1
;
Colitis-Associated Neoplasms
;
PPAR alpha/genetics*
;
Colonic Neoplasms/genetics*
;
Colon
;
Azoxymethane
;
RNA, Messenger
;
Dextran Sulfate
;
Colitis/drug therapy*
;
Mice, Inbred C57BL
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail