1.Progress in active compounds effective on ulcerative colitis from Chinese medicines.
Si-Yu CAO ; Sheng-Jie YE ; Wei-Wei WANG ; Bing WANG ; Tong ZHANG ; Yi-Qiong PU
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):81-102
Ulcerative colitis (UC), a chronic inflammatory disease affecting the colon, has a rising incidence worldwide. The known pathogenesis is multifactorial and involves genetic predisposition, epithelial barrier defects, dysregulated immune responses, and environmental factors. Nowadays, the drugs for UC include 5-aminosalicylic acid, steroids, and immunosuppressants. Long-term use of these drugs, however, may cause several side effects, such as hepatic and renal toxicity, drug resistance and allergic reactions. Moreover, the use of traditional Chinese medicine (TCM) in the treatment of UC shows significantly positive effects, low recurrence rate, few side effects and other obvious advantages. This paper summarizes several kinds of active compounds used in the experimental research of anti-UC effects extracted from TCM, mainly including flavonoids, acids, terpenoids, phenols, alkaloids, quinones, and bile acids from some animal medicines. It is found that the anti-UC activities are mainly focused on targeting inflammation or oxidative stress, which is associated with increasing the levels of anti-inflammatory cytokine (IL-4, IL-10, SOD), suppressing the levels of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-8, IL-23, NF-κB, NO), reducing the activity of MPO, MDA, IFN-γ, and iNOS. This review may offer valuable reference for UC-related studies on the compounds from natural medicines.
Animals
;
Colitis, Ulcerative
;
drug therapy
;
pathology
;
Cytokines
;
metabolism
;
Disease Models, Animal
;
Drugs, Chinese Herbal
;
chemistry
;
pharmacology
;
therapeutic use
;
Humans
;
Inflammation
;
drug therapy
;
metabolism
;
Medicine, Chinese Traditional
;
Oxidative Stress
;
drug effects
;
Phytochemicals
;
pharmacology
2.Changing Paradigm in the Management of Inflammatory Bowel Disease.
The Korean Journal of Gastroenterology 2015;65(5):268-272
Inflammatory bowel disease (IBD) is a chronic progressive idiopathic inflammatory disorder that involves the digestive tract from the mouth to the anus. Over the past decades, many therapeutic strategies have been developed to manage IBD, but therapeutic strategies based only on relief of clinical symptoms have not changed the natural history of this disease entity. This underlines the importance of understanding the natural history of IBD itself. When we look at the natural history of Crohn's disease (CD), it first begins with inflammation of the intestinal mucosa and this inflammatory reaction proceeds to stenosing or penetrating reaction if not adequately controlled. However, it takes a considerable amount of time before mucosal inflammation proceeds to stenosis of the intestinal lumen or penetration into the adjacent bowel. Therefore, it can be expected that if proper care is given during that period, progression of CD to such a complicated disease could be prevented. Even though the concept of mucosal healing was introduced in the early 1990s, no correlation could be observed between healing of mucosal lesions and relief of clinical symptoms. However, the introduction of biologic agents targeting tumor necrosis factor has changed the way to treat IBD that is refractory to standard medications and has allowed us to aim for a new therapeutic goal, 'deep remission'. Further advances in biologic agents have provided highly effective treatments for IBD, making deep remission a realistic goal. Whether IBD patients may benefit by experiencing a 'deep' remission beyond the control of clinical symptoms need to be evaluated in further investigation. Nevertheless, it can be anticipated that attaining deep remission might ultimately have an impact on important outcomes such as the need for surgery and the quality of life.
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
;
Antibodies, Monoclonal/therapeutic use
;
Colitis, Ulcerative/drug therapy/metabolism/pathology
;
Crohn Disease/drug therapy/metabolism/pathology
;
Humans
;
Inflammatory Bowel Diseases/drug therapy/metabolism/*pathology
;
Intestinal Mucosa/metabolism/pathology
;
Mesalamine/therapeutic use
;
Tumor Necrosis Factor-alpha/immunology/metabolism
3.Role of β2-adrenoceptor-β-arrestin2-nuclear factor-κB signal transduction pathway and intervention effects of oxymatrine in ulcerative colitis.
Heng FAN ; Yi LIAO ; Qing TANG ; Xiao-Yan CHEN ; Li-Juan ZHANG ; Xing-Xing LIU ; Min ZHONG
Chinese journal of integrative medicine 2012;18(7):514-521
OBJECTIVETo investigate the β2-adrenoceptor (β2AR)-β-arrestin2-nuclear factor-κB (NF-κB) signal transduction pathway and the intervention effects of oxymatrine in a rat model of ulcerative colitis.
METHODSForty SD rats were randomly divided into four groups, which included the normal control group, the model group, the mesalazine group and the oxymatrine treatment group, with 10 rats per group. Experimental colitis induced with trinitrobenzene sulfonic acid (TNBS) was established in each group except the normal control group. The rats in the oxymatrine treatment group were treated with intramuscular injection of oxymatrine 63 mg/(kg·d) for 15 days and the rats in the mesalazine group were treated with mesalazine solution 0.5 g/(kg·d) by gastric lavage for 15 days. The rats in the normal control group and model group were treated with 3 mL water by gastric lavage for 15 days. Diarrhea and bloody stool were carefully observed. Histological changes in colonic tissue were examined on day 7 in 2 rats per group that were randomly selected. The expression of β2AR, β-arrestin2 and NF-κB p65 in colon tissue and spleen lymphocytes were detected with immunohistochemistry and Western immunoblotting techniques on day 16 after fasting for 24 h. Six rats died of lavage with 2 each in the normal control, the model group and the mesalazine group; and were not included in the analysis.
RESULTSThe rats in the model group suffered from looser stool and bloody purulent stool after modeling. But in the oxymatrine and mesalazine groups, looser stool and bloody purulent stool reduced after treatment. And the colonic wall in the model group was thickened and the colon length shortened. The colon mucosa was congested in multiple areas with edema, erosion, superficial or linear ulcer and scar formation, while the intestinal mucosa injury reduced in the mesalazine and oxymatrine groups (P<0.01). In colonic mucosa and in spleen lymphocytes, compared with the normal control group, the expression of NF-κBp65 were significantly increased (P<0.01) in the model group while the expressions of β 2AR and β-arrestin2 were significantly decreased (P<0.01). Compared with the model group, the expression of NF-κ Bp65 was significantly decreased in the mesalazine group (P<0.01) and oxymatrine treatment group (P<0.01) while the expressions of β2AR and β-arrestin2 were significantly increased (P<0.01). There were no statistically significant differences in the expression of β2AR, β-arrestin2 and NF-κBp65 between the mesalazine group and oxymatrine group (P>0.05).
CONCLUSIONSThe β2AR-β-arrestin2-NF-κB signal transduction pathway participated in the pathologic course of ulcerative colitis. Oxymatrine attenuated ulcerative colitis through regulating the β2AR-β-arrestin2-NF-κB signal transduction pathway.
Alkaloids ; pharmacology ; Animals ; Arrestins ; metabolism ; Colitis, Ulcerative ; drug therapy ; metabolism ; Colon ; drug effects ; pathology ; Intestinal Mucosa ; drug effects ; metabolism ; pathology ; Lymphocytes ; metabolism ; pathology ; Male ; NF-kappa B ; metabolism ; Quinolizines ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Adrenergic, beta-2 ; metabolism ; Signal Transduction ; drug effects ; Spleen ; pathology ; beta-Arrestins
4.The effects of nuclear factor-kappa B p65 antisense oligonucleotides on expression of proinflammatory cytokines in lamina propria mononuclear cells from patients with ulcerative colitis.
Huatian GAN ; Qin OUYANG ; Youqin CHEN ; Feng LIANG
Journal of Biomedical Engineering 2003;20(2):268-272
To investigate if nuclear factor-kappa B (NF-kappa B) p65 antisense oligonucleotides might affect the expression of NF-kappa B p65 and cytokines in lamina propria mononuclear cells(LPMC) from patients with ulcerative colitis (UC). LPMC were isolated from intestinal mucosal biopsy specimens from 3 patients with UC, and cultured with or without NF-kappa B p65 antisense oligonucleotides (5'-GGAACAGTTCGTCCTATGG-3'), missense oligonucleotides (5'-GGAACAGTTCGTCTATGG-3') and dexamethasone. NF-kappa B p65 expression was determined by western blot analysis. The expression of cytokine mRNA was studied by reversal transcription-polymerase chain reaction (RT-PCR). The cytokine levels were measured by enzyme linked immunosorbent assay. The results showed that NF-kappa B p65 antisense oligonucleotides resulted in down-regulation of NF-kappa B p65 expression, blocked the expression of IL-1 beta mRNA and IL-8 mRNA, and strikingly reduced the production of IL-1 beta and IL-8, and these effects were greater than those of dexamethasone in cultured LPMC from patients with UC(P < 0.05). Therefore, the application of NF-kappa B p65 antisense oligonucleotides may serve as a novel molecular approach for the treatment of patients with UC.
Cells, Cultured
;
Colitis, Ulcerative
;
drug therapy
;
pathology
;
Cytokines
;
biosynthesis
;
genetics
;
Humans
;
Interleukin-1
;
biosynthesis
;
genetics
;
Interleukin-8
;
biosynthesis
;
genetics
;
Intestinal Mucosa
;
cytology
;
Monocytes
;
drug effects
;
metabolism
;
NF-kappa B
;
biosynthesis
;
genetics
;
Oligonucleotides, Antisense
;
pharmacology
;
RNA, Messenger
;
biosynthesis
5.Protective effect of purslane in a rat model of ulcerative colitis.
China Journal of Chinese Materia Medica 2011;36(19):2727-2730
OBJECTIVETo evaluate the protective effect of purslane on the acute injury caused by intra-colonic administration of trinitrobenzenesulfonic acid (TNBS) in rats.
METHODSeventy-two male SD rats were separated into 6 groups randomly. Rat model of ulcerative colitis was established by intra-colonic administration of trinitrobenzenesulfonic acid (TNBS). Purslane (2.5, 5, 10 g x kg(-1)) and sulfasalazine(0.5 g x kg(-1)) was administered by enemata, 3 days after TNBS instillation and daily during 10 days before killing the rats. Colons were removed for histological analysis and measurement of myeloperoxidase (MPO).
RESULTRats treated with purslane (5 and 10 g x kg(-1)) were significantly healthier than TNBS-alone rats, as shown by improved food intake and reduced diarrhea, corrected the disorders in morphology associated to lesions, significantly reduced myeloperoxidase (MPO) levels.
CONCLUSIONpurslane exerts protective effect in experimental colitis, the effect seems to be related to relieving inflammatory reaction and repairing lesions.
Animals ; Colitis, Ulcerative ; drug therapy ; enzymology ; genetics ; pathology ; Disease Models, Animal ; Drugs, Chinese Herbal ; administration & dosage ; Humans ; Male ; Peroxidase ; genetics ; metabolism ; Portulaca ; chemistry ; Protective Agents ; administration & dosage ; Rats ; Rats, Sprague-Dawley ; Treatment Outcome
6.The immune-stimulating peptide WKYMVm has therapeutic effects against ulcerative colitis.
Sang Doo KIM ; Soonil KWON ; Sung Kyun LEE ; Minsoo KOOK ; Ha Young LEE ; Ki Duk SONG ; Hak Kyo LEE ; Suk Hwan BAEK ; Chan Bae PARK ; Yoe Sik BAE
Experimental & Molecular Medicine 2013;45(9):e40-
In this study, we examined the therapeutic effects of an immune-stimulating peptide, WKYMVm, in ulcerative colitis. The administration of WKYMVm to dextran sodium sulfate (DSS)-treated mice reversed decreases in body weight, bleeding score and stool score in addition to reversing DSS-induced mucosa destruction and shortened colon. The WKYMVm-induced therapeutic effect against ulcerative colitis was strongly inhibited by a formyl peptide receptor (FPR) 2 antagonist, WRWWWW, indicating the crucial role of FPR2 in this effect. Mechanistically, WKYMVm effectively decreases intestinal permeability by stimulating colon epithelial cell proliferation. WKYMVm also strongly decreases interleukin-23 and transforming growth factor-beta production in the colon of DSS-treated mice. We suggest that the potent immune-modulating peptide WKYMVm and its receptor FPR2 may be useful in the development of efficient therapeutic agents against chronic intestinal inflammatory diseases.
Adjuvants, Immunologic/pharmacology/*therapeutic use
;
Animals
;
Caco-2 Cells
;
Cell Proliferation
;
Colitis, Ulcerative/*drug therapy/metabolism
;
Colon/pathology
;
Humans
;
Interleukin-23/genetics/metabolism
;
Intestinal Mucosa/drug effects/metabolism/pathology
;
Mice
;
Mice, Inbred C57BL
;
Oligopeptides/pharmacology/*therapeutic use
;
Permeability
;
Receptors, Formyl Peptide/antagonists & inhibitors
;
Transforming Growth Factor beta/genetics/metabolism
7.Mechanism of Shenling Baizhu Powder on treatment of ulcerative colitis based on NLRP3 inflammatory.
Yu-Hui LIU ; Zi-Ling RONG ; Hong-Yang ZHU ; Yu-Ting LI ; Yu YOU
China Journal of Chinese Materia Medica 2022;47(21):5863-5871
This study deciphered the mechanism of Shenling Baizhu Powder in treatment of mouse model of ulcerative colitis(UC) via NOD-like receptor thermoprotein domain 3(NLRP3) signaling pathway. After three days of adaptive feeding, 70 SPF-grade BALB/c mice were randomized into 7 groups: normal group, model group(dextran sodium sulfate, DSS), mesalazine group(DSS + 5-aminosalicylic acid, 5-ASA), NLRP3 inhibitor group(DSS + MCC950), and high-, medium-, and low-dose Shenling Baizhu Powder groups(DSS + high-, medium-, and low-dose Shenling Baizhu Powder), with 10 mice per group. The normal group had free access to double distilled water, and the remaining groups had free access to DSS-containing water to establish the acute UC model. Intragastric administration was started at the same time as modeling for one week. During the experiment, the general mental state and disease activity of each group of mice were recorded and scored. After the experiment, colon and serum samples were collected. The pathological changes in colon tissue were observed through hematoxylin-eosin(HE) staining. Enzyme-linked immunosorbent assay(ELISA) was employed to determine the levels of interleukin-18(IL-18) and myeloperoxidase(MPO) in colon tissue and interleukin-1β(IL-1β) in serum. Immunofluorescence(IF) and immunohistochemistry(IHC) methods were employed to examine the expression of NLRP3 and IL-18 in colon tissue. Western blot was employed to measure the protein levels of NLRP3, apoptosis-associated speck-like protein(ASC), cystein-aspartate protease 1(caspase-1), and downstream inflammatory cytokines in colon tissue. Compared with the normal group, the modeling of UC increased the disease activity index(DAI), colon pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue(P<0.05, P<0.01). Furthermore, the modeling caused obvious pathological changes and up-regulated the expression of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.01). Compared with the model group, the administration of corresponding drugs decreased the DAI, pathological injury score, IL-1β level in serum, and IL-18 and MPO levels in colon tissue, and down-regulated the protein levels of NLRP3, caspase-1, ASC, pro-IL-1β, cleaved-IL-1β, pro-IL-18, and cleaved-IL-18 in the colon(P<0.05, P<0.01). According to the results of previous study and this study, we concluded that Shenling Baizhu Powder can alleviate the inflammatory response and intestinal damage of DSS-induced UC by regulating the expression of the proteins and inflammatory cytokines associated with NLRP3 signaling pathway.
Mice
;
Animals
;
Colitis, Ulcerative/drug therapy*
;
Dextran Sulfate/adverse effects*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Interleukin-18/genetics*
;
Powders
;
Colon/metabolism*
;
Caspase 1
;
Mesalamine/adverse effects*
;
Mice, Inbred BALB C
;
Disease Models, Animal
;
Cytokines/metabolism*
;
Water
;
Colitis/pathology*
8.Drug-induced lymphadenitis.
Wei-hua YIN ; Hong-yu ZHANG ; Xue-feng LI ; Ya MA
Chinese Journal of Pathology 2010;39(3):192-194
Adult
;
Anti-Inflammatory Agents, Non-Steroidal
;
adverse effects
;
therapeutic use
;
CD3 Complex
;
metabolism
;
Colitis, Ulcerative
;
drug therapy
;
Diagnosis, Differential
;
Drug Hypersensitivity
;
etiology
;
metabolism
;
pathology
;
Female
;
Gastrointestinal Agents
;
adverse effects
;
therapeutic use
;
Humans
;
Immunoblastic Lymphadenopathy
;
metabolism
;
pathology
;
Ki-1 Antigen
;
metabolism
;
Lymphadenitis
;
chemically induced
;
metabolism
;
pathology
;
Lymphoma, Large-Cell, Anaplastic
;
metabolism
;
pathology
;
Lymphoma, T-Cell
;
metabolism
;
pathology
;
Receptors, Complement 3d
;
metabolism
;
Sulfasalazine
;
adverse effects
;
therapeutic use
9.Efficacy of topical versus oral 5-aminosalicylate for treatment of 2,4,6-trinitrobenzene sulfonic acid-induced ulcerative colitis in rats.
Jin LI ; Cheng CHEN ; Xiao-nian CAO ; Gui-hua WANG ; Jun-bo HU ; Jing WANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2014;34(1):59-65
5-aminosalicylic acid (5-ASA) is drug of choice for the treatment of ulcerative colitis (UC). In this study, the efficacy of topical versus oral 5-ASA for the treatment of UC was examined as well as the action mechanism of this medication. A flexible tube was inserted into the rat cecum to establish a topical administration model of 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced UC. A total of 60 rats were divided into sham operation group (receiving an enema of 0.9% saline solution instead of the TNBS solution via the tube), model group, topical 5-ASA group, oral Etiasa group (a release agent of mesalazine used as positive control) and oral 5-ASA group (n=12 each). Different treatments were administered 1 day after UC induction. The normal saline (2 mL) was instilled twice a day through the tube in the sham operation group and model group. 5-ASA was given via the tube in the topical 5-ASA group (7.5 g/L, twice per day, 100 mg/kg), and rats in the oral Etiasa group and oral 5-ASA group intragastrically received Etiasa (7.5 g/L, twice per day, 100 mg/kg) and 5-ASA (7.5 g/L, twice per day, 100 mg/kg), respectively. The body weight was recorded every day. After 7 days of treatment, blood samples were drawn from the heart to harvest the sera. Colonic tissues were separated and prepared for pathological and related molecular biological examinations. The concentrations of 5-ASA were detected at different time points in the colonic tissues, feces and sera in different groups by using the high pressure liquid chromatography (HPLC). The results showed that the symptoms of acute UC, including bloody diarrhea and weight loss, were significantly improved in topical 5-ASA-treated rats. The colonic mucosal damage, both macroscopical and histological, was significantly relieved and the myeloperoxidase activity was markedly decreased in rats topically treated with 5-ASA compared with those treated with oral 5-ASA or Etiasa. The mRNA and protein expression of IL-1β, IL-6, and TNF-α was down-regulated in the colonic tissue of rats topically treated with 5-ASA, significantly lower than those from rats treated with oral 5-ASA or Etiasa. The concentrations of 5-ASA in the colonic tissue were significantly higher in the topical 5-ASA group than in the oral 5-ASA and oral Etiasa groups. It was concluded that the topical administration of 5-ASA can effectively increase the concentration of 5-ASA in the colonic tissue, decrease the expression of proinflammatory cytokines, alleviate the colonic pathological damage and improve the symptoms of TNBS-induced acute UC in rats.
Administration, Oral
;
Administration, Topical
;
Animals
;
Anti-Inflammatory Agents, Non-Steroidal
;
administration & dosage
;
pharmacology
;
Colitis, Ulcerative
;
chemically induced
;
drug therapy
;
Colon
;
drug effects
;
metabolism
;
pathology
;
Down-Regulation
;
drug effects
;
Drug Administration Schedule
;
Gene Expression
;
drug effects
;
Immunohistochemistry
;
Interleukin-1beta
;
genetics
;
metabolism
;
Interleukin-6
;
genetics
;
metabolism
;
Intestinal Mucosa
;
drug effects
;
metabolism
;
pathology
;
Male
;
Mesalamine
;
administration & dosage
;
pharmacology
;
Peroxidase
;
metabolism
;
Rats
;
Rats, Wistar
;
Reverse Transcriptase Polymerase Chain Reaction
;
Time Factors
;
Treatment Outcome
;
Trinitrobenzenesulfonic Acid
;
Tumor Necrosis Factor-alpha
;
genetics
;
metabolism