1.Cognitive profile in mild cognitive impairment with Lewy bodies.
Shuai LIU ; Chunyan LIU ; Xiao-Dan WANG ; Huiru LU ; Yong JI
Singapore medical journal 2023;64(8):487-492
INTRODUCTION:
This study aimed to elucidate the cognitive profile of patients with mild cognitive impairment with Lewy bodies (MCI-LB) and to compare it to that of patients with mild cognitive impairment due to Alzheimer's disease (MCI-AD).
METHODS:
Subjects older than 60 years with probable MCI-LB (n = 60) or MCI-AD (n = 60) were recruited. All patients were tested with Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) to assess their global cognitive profile.
RESULTS:
The MCI-AD and MCI-LB patients did not differ in total MMSE and MoCA scores. However, some sub-items in MMSE and MoCA were shown to be screening markers for differentiating MCI-LB from MCI-AD. In the visuoconstructive test, the total score and hands subitem score in the clock-drawing test were significantly lower in MCI-LB than in MCI-AD. As for the executive function, the 'animal fluency test', 'repeat digits backward test' and 'take paper by your right hand' in MMSE all showed lower scores in MCI-LB compared with MCI-AD. As for memory, 'velvet' and 'church' in MoCA and 'ball' and 'national flag' in MMSE had lower scores in MCI-AD than in MCI-LB.
CONCLUSION
This study presents the cognitive profile of patients with MCI-LB. In line with the literature on Dementia with Lewy bodies, our results showed lower performance on tests for visuoconstructive and executive function, whereas memory remained relatively spared in the early period.
Humans
;
Cognitive Dysfunction
;
Alzheimer Disease/diagnosis*
;
Neuropsychological Tests
;
Cognition
3.Research progress on biomarkers and detection methods for Alzheimer's disease diagnosis in vitro.
Yu Ting ZHANG ; Ze ZHANG ; Ying Cong ZHANG ; Xin XU ; Zhang Min WANG ; Tong SHEN ; Xiao Hui AN ; Dong CHANG
Chinese Journal of Preventive Medicine 2023;57(11):1888-1894
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset, posing a serious threat to human physical and mental health. The cognitive impairments caused by AD are generally diffuse and overlap symptomatically with other neurodegenerative diseases. Moreover, the symptoms of AD are often covert, leading to missed opportunities for optimal treatment after diagnosis. Therefore, early diagnosis of AD is crucial. In vitro diagnostic biomarkers not only contribute to the early clinical diagnosis of AD but also aid in further understanding the disease's pathogenesis, predicting disease progression, and observing the effects of novel candidate therapeutic drugs in clinical trials. Currently, although there are numerous biomarkers associated with AD diagnosis, the complex nature of AD pathogenesis, limitations of individual biomarkers, and constraints of clinical detection methods have hindered the development of efficient, cost-effective, and convenient diagnostic methods and standards. This article provides an overview of the research progress on in vitro diagnostic biomarkers and detection methods related to AD in recent years.
Humans
;
Alzheimer Disease/diagnosis*
;
Neurodegenerative Diseases
;
Early Diagnosis
;
Cognitive Dysfunction
;
Biomarkers
4.Research progress on biomarkers and detection methods for Alzheimer's disease diagnosis in vitro.
Yu Ting ZHANG ; Ze ZHANG ; Ying Cong ZHANG ; Xin XU ; Zhang Min WANG ; Tong SHEN ; Xiao Hui AN ; Dong CHANG
Chinese Journal of Preventive Medicine 2023;57(11):1888-1894
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset, posing a serious threat to human physical and mental health. The cognitive impairments caused by AD are generally diffuse and overlap symptomatically with other neurodegenerative diseases. Moreover, the symptoms of AD are often covert, leading to missed opportunities for optimal treatment after diagnosis. Therefore, early diagnosis of AD is crucial. In vitro diagnostic biomarkers not only contribute to the early clinical diagnosis of AD but also aid in further understanding the disease's pathogenesis, predicting disease progression, and observing the effects of novel candidate therapeutic drugs in clinical trials. Currently, although there are numerous biomarkers associated with AD diagnosis, the complex nature of AD pathogenesis, limitations of individual biomarkers, and constraints of clinical detection methods have hindered the development of efficient, cost-effective, and convenient diagnostic methods and standards. This article provides an overview of the research progress on in vitro diagnostic biomarkers and detection methods related to AD in recent years.
Humans
;
Alzheimer Disease/diagnosis*
;
Neurodegenerative Diseases
;
Early Diagnosis
;
Cognitive Dysfunction
;
Biomarkers
5.Analysis of EEG in the elderly with mild cognitive impairment based on Lempel-Ziv complexity.
Tuo YAN ; Qing XUE ; Ling WEI ; Yingjie LI ; Yuping WANG
Journal of Biomedical Engineering 2013;30(5):972-975
We studied the mechanism of electroencephalography (EEG) in the elderly with mild cognitive impairment (MCI) by analyzing the Lempel-Ziv complexity (LZC) of EEG during a cognitive task. We recorded the EEG simultaneously when they were asked to judge whether the color of two graphics was matched or not. The results showed that the LZC of EEG in the MCI group was significantly higher than those in the normal control group early in the period of cognitive activities (P < 0.05). The LZC in MCI patients decreased gradually over time, while results of the normal group kept unchanged. There was no significant difference in LZC between two types of tasks. The two groups showed similar regularity in spatial distribution.
Aged
;
Algorithms
;
Cognitive Dysfunction
;
diagnosis
;
physiopathology
;
Electroencephalography
;
methods
;
Female
;
Humans
;
Male
;
Signal Processing, Computer-Assisted
6.Multi-channel Synchronization Analysis of Mild Cognitive Impairment in Type 2 Diabetes Patients.
Dong CUI ; Jing LIU ; Zhijie BIAN ; Jinhuan WANG ; Qiuli LI ; Xiaoli LI ; Lei WANG
Journal of Biomedical Engineering 2015;32(2):279-283
The cognitive impairment of type 2 diabetes patients caused by long-term metabolic disorders has been the current focus of attention. In order to find the related electroencephalogram (EEG) characteristics to the mild cognitive impairment (MCI) of diabetes patients, this study analyses the EEG synchronization with the method of multichannel synchronization analysis--S estimator based on phase synchronization. The results showed that the S estimator values in each frequency band of diabetes patients with MCI were almost lower than that of control group. Especially, the S estimator values decreased significantly in the delta and alpha band, which indicated the EEG synchronization decrease. The MoCA scores and S value had a significant positive correlation in alpha band.
Cognitive Dysfunction
;
diagnosis
;
Cortical Synchronization
;
Diabetes Mellitus, Type 2
;
Electroencephalography
;
Humans
7.Early prognosis of Alzheimer's disease based on convolutional neural networks and ensemble learning.
An ZENG ; Longfei JIA ; Dan PAN ; Xiaowei SONG
Journal of Biomedical Engineering 2019;36(5):711-719
Alzheimer's disease (AD) is a typical neurodegenerative disease, which is clinically manifested as amnesia, loss of language ability and self-care ability, and so on. So far, the cause of the disease has still been unclear and the course of the disease is irreversible, and there has been no cure for the disease yet. Hence, early prognosis of AD is important for the development of new drugs and measures to slow the progression of the disease. Mild cognitive impairment (MCI) is a state between AD and healthy controls (HC). Studies have shown that patients with MCI are more likely to develop AD than those without MCI. Therefore, accurate screening of MCI patients has become one of the research hotspots of early prognosis of AD. With the rapid development of neuroimaging techniques and deep learning, more and more researchers employ deep learning methods to analyze brain neuroimaging images, such as magnetic resonance imaging (MRI), for early prognosis of AD. Hence, in this paper, a three-dimensional multi-slice classifiers ensemble based on convolutional neural network (CNN) and ensemble learning for early prognosis of AD has been proposed. Compared with the CNN classification model based on a single slice, the proposed classifiers ensemble based on multiple two-dimensional slices from three dimensions could use more effective information contained in MRI to improve classification accuracy and stability in a parallel computing mode.
Alzheimer Disease
;
diagnosis
;
Brain
;
diagnostic imaging
;
Cognitive Dysfunction
;
Deep Learning
;
Humans
;
Neural Networks (Computer)
;
Neuroimaging
;
Prognosis
8.A study on the application of cross-frequency coupling characteristics of neural oscillation in the diagnosis of mild cognitive impairment.
Xin LI ; Kai WANG ; Jun JING ; Liyong YIN ; Ying ZHANG ; Ping XIE
Journal of Biomedical Engineering 2023;40(5):843-851
In order to fully explore the neural oscillatory coupling characteristics of patients with mild cognitive impairment (MCI), this paper analyzed and compared the strength of the coupling characteristics for 28 MCI patients and 21 normal subjects under six different-frequency combinations. The results showed that the difference in the global phase synchronization index of cross-frequency coupling under δ-θ rhythm combination was statistically significant in the MCI group compared with the normal control group ( P = 0.025, d = 0.398). To further validate this coupling feature, this paper proposed an optimized convolutional neural network model that incorporated a time-frequency data enhancement module and batch normalization layers to prevent overfitting while enhancing the robustness of the model. Based on this optimized model, with the phase locking value matrix of δ-θ rhythm combination as the single input feature, the diagnostic accuracy of MCI patients was (95.49 ± 4.15)%, sensitivity and specificity were (93.71 ± 7.21)% and (97.50 ± 5.34)%, respectively. The results showed that the characteristics of the phase locking value matrix under the combination of δ-θ rhythms can adequately reflect the cognitive status of MCI patients, which is helpful to assist the diagnosis of MCI.
Humans
;
Electroencephalography/methods*
;
Cognitive Dysfunction/diagnosis*
;
Neural Networks, Computer
;
Sensitivity and Specificity
9.Research on mild cognitive impairment diagnosis based on Bayesian optimized long-short-term neural network model.
Xin LI ; Zhenyang LI ; Yi LIU ; Rui SU ; Yonghong XU ; Jun JING ; Liyong YIN
Journal of Biomedical Engineering 2023;40(3):450-457
The recurrent neural network architecture improves the processing ability of time-series data. However, issues such as exploding gradients and poor feature extraction limit its application in the automatic diagnosis of mild cognitive impairment (MCI). This paper proposed a research approach for building an MCI diagnostic model using a Bayesian-optimized bidirectional long short-term memory network (BO-BiLSTM) to address this problem. The diagnostic model was based on a Bayesian algorithm and combined prior distribution and posterior probability results to optimize the BO-BiLSTM network hyperparameters. It also used multiple feature quantities that fully reflected the cognitive state of the MCI brain, such as power spectral density, fuzzy entropy, and multifractal spectrum, as the input of the diagnostic model to achieve automatic MCI diagnosis. The results showed that the feature-fused Bayesian-optimized BiLSTM network model achieved an MCI diagnostic accuracy of 98.64% and effectively completed the diagnostic assessment of MCI. In conclusion, based on this optimization, the long short-term neural network model has achieved automatic diagnostic assessment of MCI, providing a new diagnostic model for intelligent diagnosis of MCI.
Humans
;
Bayes Theorem
;
Neural Networks, Computer
;
Algorithms
;
Brain
;
Cognitive Dysfunction/diagnosis*
10.Cognitive Impairment in Idiopathic Normal Pressure Hydrocephalus.
Haoyun XIAO ; Fan HU ; Jing DING ; Zheng YE
Neuroscience Bulletin 2022;38(9):1085-1096
Idiopathic normal pressure hydrocephalus (iNPH) is a significant cause of the severe cognitive decline in the elderly population. There is no cure for iNPH, but cognitive symptoms can be partially alleviated through cerebrospinal fluid (CSF) diversion. In the early stages of iNPH, cognitive deficits occur primarily in the executive functions and working memory supported by frontostriatal circuits. As the disease progresses, cognition declines continuously and globally, leading to poor quality of life and daily functioning. In this review, we present recent advances in understanding the neurobiological mechanisms of cognitive impairment in iNPH, focusing on (1) abnormal CSF dynamics, (2) dysfunction of frontostriatal and entorhinal-hippocampal circuits and the default mode network, (3) abnormal neuromodulation, and (4) the presence of amyloid-β and tau pathologies.
Aged
;
Cognitive Dysfunction/etiology*
;
Humans
;
Hydrocephalus, Normal Pressure/diagnosis*
;
Peptide Fragments
;
Quality of Life
;
tau Proteins