1.Functional Genes and Proteins of Clonorchis sinensis.
Tae Im KIM ; Byoung Kuk NA ; Sung Jong HONG
The Korean Journal of Parasitology 2009;47(Suppl):S59-S68
During the past several decades, researches on parasite genetics have progressed from biochemical and serodiagnostic studies to protein chemistry, molecular biology, and functional gene studies. Nowadays, bioinformatics, genomics, and proteomics approaches are being applied by Korean parasitology researchers. As for Clonorchis sinensis, investigations have been carried out to identify its functional genes using forward and reverse genetic approaches and to characterize the biochemical and biological properties of its gene products. The authors review the proteins of cloned genes, which include antigenic proteins, physiologic and metabolic enzymes, and the gene expression profile of Clonorchis sinensis.
Animals
;
Clonorchiasis/parasitology
;
Clonorchis sinensis/enzymology/*genetics/*metabolism
;
Gene Expression Regulation
;
Helminth Proteins/*genetics/*metabolism
;
Humans
2.Pathological Lesions and Inducible Nitric Oxide Synthase Expressions in the Liver of Mice Experimentally Infected with Clonorchis sinensis.
Qing Li YANG ; Ji Qing SHEN ; Yan XUE ; Xiao Bing CHENG ; Zhi Hua JIANG ; Yi Chao YANG ; Ying Dan CHEN ; Xiao Nong ZHOU
The Korean Journal of Parasitology 2015;53(6):777-783
The nitric oxide (NO) formation and intrinsic nitrosation may be involved in the possible mechanisms of liver fluke-associated carcinogenesis. We still do not know much about the responses of inducible NO synthase (iNOS) induced by Clonorchis sinensis infection. This study was conducted to explore the pathological lesions and iNOS expressions in the liver of mice with different infection intensity levels of C. sinensis. Extensive periductal inflammatory cell infiltration, bile duct hyperplasia, and fibrosis were commonly observed during the infection. The different pathological responses in liver tissues strongly correlated with the infection intensity of C. sinensis. Massive acute spotty necrosis occurred in the liver parenchyma after a severe infection. The iNOS activity in liver tissues increased, and iNOS-expressing cells with morphological differences were observed after a moderate or severe infection. The iNOS-expressing cells in liver tissues had multiple origins.
Animals
;
Clonorchiasis/*enzymology/genetics/parasitology/*pathology
;
Clonorchis sinensis/*physiology
;
Female
;
Humans
;
Liver/*enzymology/parasitology/pathology
;
Mice
;
Mice, Inbred BALB C
;
Nitric Oxide Synthase Type II/*genetics/metabolism
3.Cloning of a pore-forming subunit of ATP-sensitive potassium channel from Clonorchis sinensis.
Seung Young HWANG ; Hye Jin HAN ; So Hee KIM ; Sae Gwang PARK ; Dae Hyun SEOG ; Na Ri KIM ; Jin HAN ; Joon Yong CHUNG ; Weon Gyu KHO
The Korean Journal of Parasitology 2003;41(2):129-133
A complete cDNA sequence encoding a pore-forming subunit (Kir6.2) of ATP-senstive potassium channel in the adult worm, Clonorchis sinensis, termed CsKir6.2, was isolated from an adult cDNA library. The cDNA contained a single open-reading frame of 333 amino acids, which has a structural motif (a GFG-motif) of the putative pore-forming loop of the Kir6.2. Peculiarly, the CsKir6.2 shows a lack-sequence structure, which deleted 57 amino acids were deleted from its N-terminus. The predicted amino acid sequence revealed a highly conserved sequence as other known other Kir6.2 subunits. The mRNA was weekly expressed in the adult worm.
Adenosine Triphosphate/metabolism
;
Amino Acid Sequence
;
Animals
;
Base Sequence
;
Cloning, Molecular
;
Clonorchis sinensis/*genetics/metabolism
;
Helminth Proteins/*genetics/metabolism
;
Human
;
Molecular Sequence Data
;
Potassium Channels, Inwardly Rectifying/*genetics/metabolism
;
RNA, Helminth/chemistry/genetics
;
Sequence Alignment
;
Support, Non-U.S. Gov't
4.Regulation of anti-inflammatory cytokines IL-10 and TGF-beta in mouse dendritic cells through treatment with Clonorchis sinensis crude antigen.
Yan JIN ; Hae Joo WI ; Min Ho CHOI ; Sung Tae HONG ; Young Mee BAE
Experimental & Molecular Medicine 2014;46(1):e74-
Dendritic cells (DCs), which are regarded as the most potent antigen-presenting cells, are involved in innate and adaptive immunity. Upon uptake of pathogens, DCs express cell surface markers and secrete cytokines. In this study, we analyzed production of cytokines and found that interleukin (IL)-10 and transforming growth factor (TGF)-beta production significantly increased in bone marrow-derived DCs and a mouse DC line, DC2.4, after treatment with crude antigen (CA) from liver fluke, Clonorchis sinensis. However, expression patterns of several activation molecules did not change. In addition, following treatment of DC2.4 cells with antigen from the lung fluke, Paragonimus westermani, production of IL-10 and TGF-beta significantly increased compared with groups treated with other parasite antigens, Spirometra erinacei plerocercoid CA and Echinococcus granulosus hydatid cystic fluid. We also found that treatment of DC2.4 cells with C. sinensis CA resulted in rapid and significant phosphorylation of extracellular signal-regulated kinase 1/2, a mitogen-activated protein kinase. Following treatment of DC2.4 cells with C. sinensis CA, treatment with an inhibitor specific to an extracellular signal-regulated kinase inhibited production of IL-10 and TGF-beta. Our results suggest that CA from C. sinensis has a role in the anti-inflammatory function of DC cells by inducing IL-10 and TGF-beta through activation of extracellular signal-regulated kinase 1/2.
Animals
;
Antigens, Helminth/*pharmacology
;
Cells, Cultured
;
Clonorchis sinensis/*immunology
;
Dendritic Cells/drug effects/*metabolism
;
Interleukin-10/genetics/*metabolism
;
MAP Kinase Signaling System
;
Mice
;
Transforming Growth Factor beta/genetics/*metabolism
5.Identification and Molecular Characterization of Parkin in Clonorchis sinensis.
Xuelian BAI ; Tae Im KIM ; Ji Yun LEE ; Fuhong DAI ; Sung Jong HONG
The Korean Journal of Parasitology 2015;53(1):65-75
Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to Zn2+ were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.
Amino Acid Sequence
;
Animals
;
Clonorchis sinensis/*enzymology
;
Cluster Analysis
;
Conserved Sequence
;
DNA, Complementary/genetics
;
Energy Metabolism
;
Gene Expression Profiling
;
Mitochondria/metabolism
;
Models, Molecular
;
Molecular Weight
;
Phylogeny
;
Protein Conformation
;
Sequence Homology, Amino Acid
;
Ubiquitin-Protein Ligases/chemistry/*genetics/*metabolism
6.Identification and Molecular Characterization of Parkin in Clonorchis sinensis.
Xuelian BAI ; Tae Im KIM ; Ji Yun LEE ; Fuhong DAI ; Sung Jong HONG
The Korean Journal of Parasitology 2015;53(1):65-75
Clonorchis sinensis habitating in the bile duct of mammals causes clonorchiasis endemic in East Asian countries. Parkin is a RING-between-RING protein and has E3-ubiquitin ligase activity catalyzing ubiquitination and degradation of substrate proteins. A cDNA clone of C. sinensis was predicted to encode a polypeptide homologous to parkin (CsParkin) including 5 domains (Ubl, RING0, RING1, IBR, and RING2). The cysteine and histidine residues binding to Zn2+ were all conserved and participated in formation of tertiary structural RINGs. Conserved residues were also an E2-binding site in RING1 domain and a catalytic cysteine residue in the RING2 domain. Native CsParkin was determined to have an estimated molecular weight of 45.7 kDa from C. sinensis adults by immunoblotting. CsParkin revealed E3-ubiquitin ligase activity and higher expression in metacercariae than in adults. CsParkin was localized in the locomotive and male reproductive organs of C. sinensis adults, and extensively in metacercariae. Parkin has been found to participate in regulating mitochondrial function and energy metabolism in mammalian cells. From these results, it is suggested that CsParkin play roles in energy metabolism of the locomotive organs, and possibly in protein metabolism of the reproductive organs of C. sinensis.
Amino Acid Sequence
;
Animals
;
Clonorchis sinensis/*enzymology
;
Cluster Analysis
;
Conserved Sequence
;
DNA, Complementary/genetics
;
Energy Metabolism
;
Gene Expression Profiling
;
Mitochondria/metabolism
;
Models, Molecular
;
Molecular Weight
;
Phylogeny
;
Protein Conformation
;
Sequence Homology, Amino Acid
;
Ubiquitin-Protein Ligases/chemistry/*genetics/*metabolism
7.Molecular Cloning and Characterization of a Paramyosin from Clonorchis sinensis.
Tae Joon PARK ; Jung Mi KANG ; Byoung Kuk NA ; Woon Mok SOHN
The Korean Journal of Parasitology 2009;47(4):359-367
Paramyosin is a myofibrillar protein present in helminth parasites and plays multifunctional roles in host-parasite interactions. In this study, we identified the gene encoding paramyosin of Clonorchis sinensis (CsPmy) and characterized biochemical and immunological properties of its recombinant protein. CsPmy showed a high level of sequence identity with paramyosin from other helminth parasites. Recombinant CsPmy (rCsPmy) expressed in bacteria had an approximate molecular weight of 100 kDa and bound both human collagen and complement 9. The protein was constitutively expressed in various developmental stages of the parasite. Imunofluorescence analysis revealed that CsPmy was mainly localized in the tegument, subtegumental muscles, and the muscle layer surrounding the intestine of the parasite. The rCsPmy showed high levels of positive reactions (74.6%, 56/75) against sera from patients with clonorchiasis. Immunization of experimental rats with rCsPmy evoked high levels of IgG production. These results collectively suggest that CsPmy is a multifunctional protein that not only contributes to the muscle layer structure but also to non-muscular functions in host-parasite interactions. Successful induction of host IgG production also suggests that CsPmy can be applied as a diagnostic antigen and/or vaccine candidate for clonorchiasis.
Amino Acid Sequence
;
Animal Structures/chemistry
;
Animals
;
Antibodies, Helminth/blood
;
Cloning, Molecular
;
Clonorchis sinensis/chemistry/*genetics
;
Collagen/metabolism
;
Complement C9/metabolism
;
Helminth Proteins/chemistry/*genetics/immunology/metabolism
;
Immunoglobulin G/blood
;
Molecular Sequence Data
;
Molecular Weight
;
Protein Binding
;
Rats
;
Rats, Sprague-Dawley
;
Sequence Alignment
;
Sequence Analysis, DNA
;
Sequence Homology, Amino Acid
;
Tropomyosin/chemistry/*genetics/immunology/metabolism