1.Purification of clathrin assembly protein from rat liver.
Experimental & Molecular Medicine 2000;32(4):222-226
Recently, the gene encoding clathrin assembly protein of lymphoid myeloid leukemia (CALM), which is homologous to the AP180, was cloned from rat brain, and its expression differential to AP180 was reported (Kim and Lee, 1999). This gene product promotes the polymerization of clathrin into clathrin cage and found to be a regulator in membrane trafficking between intracellular compartments in eukaryotic cells (Kim et al., 2000). In this study, we have purified the CALM protein from clathrin-coated vesicles of rat liver using the monoclonal antibody against the recombinant N-terminal region of the CALM. The coated proteins extracted from the coated vesicle fraction was further purified by multi-step procedures involving gel-filtration and ion-exchange chromatography and SDS-PAGE. The purified protein with an apparent molecular weight of 100 kD promoted the assembly of clathrin triskelia into clathrin cage. In this respect the CALM protein bears a functional resemblance to the AP180 that has been previously described.
Animal
;
Clathrin/*metabolism
;
Clathrin-Coated Vesicles/*chemistry
;
Liver/*chemistry
;
Nerve Tissue Proteins/*isolation & purification
;
Phosphoproteins/*isolation & purification
;
Rats
2.Mechanism of cellular uptake and transport mediated by integrin receptor targeting trimethyl chitosan nanoparticles.
Juan XU ; Chong LIU ; Yi-ning XU ; Wei SHAN ; Min LIU ; Yuan HUANG
Acta Pharmaceutica Sinica 2015;50(7):893-898
This study investigated a nano drug delivery system built by one sort of modified trimethyl chitosan (TMC). The TMC was modified by cRGDyk, ligand of integrin receptor avβ3. Single factor screening was used to optimize the prescription in which the particle sizes of TMC nanoparticle (TMC NPs) and cRGDyk modified TMC nanoparticle (C-TMC NPs) were (240.3 ± 4.2) nm and (259.5 ± 3.3) nm. Electric potential of those two nanoparticles were (33.5 ± 0.8) mV and (25.7 ± 1.6) mV. Encapsulation efficiencies were (76.0 ± 2.2) % and (74.4 ± 2.0) %. Drug loading efficacies were (50.1 ± 2.1) % and (26.1 ± 1.0) %. Then the cellular uptake, uptake mechanism and transport efficacy of TMC NPs and C-TMC NPs were investigated using Caco-2 cell line. The uptake rate and accumulating drug transit dose of C-TMC NPs were 1.98 and 2.84 times higher than TMC NPs, separately. Mechanism investigations revealed that caveolae-mediated endocytosis, clathrin-mediated endocytosis and macropinocytosis were involved in the intercellular uptake of both TMC NPs and C-TMC NPs. What is more, free cRGDyk could remarkably inhibit the uptake of C-TMC NPs.
Biological Transport
;
Caco-2 Cells
;
Caveolae
;
Chitosan
;
chemistry
;
Clathrin
;
Endocytosis
;
Humans
;
Integrin alphaVbeta3
;
chemistry
;
Nanoparticles
;
Particle Size
;
Pinocytosis
3.Cell-free expression and functional reconstitution of CALM in clathrin assembly.
Experimental & Molecular Medicine 2001;33(2):89-94
Clathrin-mediated vesicle formation is an essential step in the intracellular trafficking of the protein and lipid. Binding of clathrin assembly protein to clathrin triskelia induces their assembly into clathrin-coated vesicles (CCVs). In order to better understand a possible role of post-translational modification of CALM (clathrin assembly protein lymphoid myeloid), the homologue of AP180, in the assembly of CCVs, CALM was expressed in the cell-free reticulocyte translation system that is capable of carrying out post-translational modification. The apparent molecular weight of the expressed recombinant CALM was estimated as 105 kD. Alkaline phosphatase treatment of CALM resulted in a mobility shift on SDS-PAGE. We found that CALM was associated with the proteins harboring SH3 domain, promote assembly of clathrin triskelia into clathrin cage and bound to the preformed clathrin cage. CALM was also proteolyzed by caspase 3 and calpain but not by caspase 8. These results indicated that the post-translationally modified CALM, expressed in the eukaryotic cell-free reticulocyte translation system was able to mediate the assembly of clathrin and the coated-vesicle formation.
Alkaline Phosphatase/pharmacology
;
Animal
;
Brain/metabolism
;
Calpain/metabolism
;
Carrier Proteins/*chemistry
;
Caspases/metabolism
;
Cattle
;
Cell-Free System
;
Clathrin/*chemistry
;
Electrophoresis, Polyacrylamide Gel
;
Glutathione Transferase/metabolism
;
Lipids/chemistry
;
Membrane Proteins/*chemistry
;
Phosphorylation
;
Protein Binding
;
Protein Processing, Post-Translational
;
Protein Structure, Tertiary
;
Protein Transport
;
Recombinant Proteins/chemistry/metabolism
;
Reticulocytes/metabolism
;
Support, Non-U.S. Gov't
;
Translation, Genetic
;
src Homology Domains
4.Cleavage of purified neuronal clathrin assembly protein (CALM) by caspase 3 and calpain.
Experimental & Molecular Medicine 2001;33(4):245-250
The most efficient means of protein internalization from the membrane are through clathrin-coated pits, which concentrate protein interactions with the clathrin-associated assembly protein complex AP-2 and internalization signals in the cytoplasmic domain of transmembrane proteins. Binding of clathrin assembly protein to clathrin triskelia induces their assembly into clathrin-coated vesicles (CCVs). Due to a difficulty of isolating clathrin molecules from their complex or assembly state in the cells, most of the studies were carried out with recombinant clathrin proteins, which may present different conformation and structural variation. In this study, we have developed an efficient method of isolating the native clathrin assembly protein lymphoid myeloid (CALM) from the bovine brain that is enriched with clathrin and clathrin associated proteins and characterized by their sensitivity to proteases and it's ability to form CCV. The purified CALM has molecular weight of approximately 100,000 dalton on SDS-PAGE, which is consistent with the result of in vitro translation. The purified CALM protein could promote the assembly of clathrin triskelia into clathrin cage, and cleaved CALM proteolysed by caspase 3 and calpain could not promote them. In this respect, our data support a model in which CALM functions like AP180 as a monomeric clathrin assembly protein and might take part in apoptotic process in neuronal cells.
Adaptor Proteins
;
Animal
;
Brain Chemistry
;
Calpain/*metabolism
;
Carrier Proteins
;
Caspases/*metabolism
;
Cattle
;
Clathrin/*metabolism
;
Coated Pits, Cell-Membrane/*metabolism
;
Hydrolysis
;
Membrane Proteins
;
Molecular Weight
;
Nerve Tissue Proteins/chemistry/*isolation & purification/metabolism
;
Neurons/*chemistry
;
Protein Binding
;
Protein Conformation
;
Recombinant Proteins/chemistry/metabolism
5.Cleavage of purified neuronal clathrin assembly protein (CALM) by caspase 3 and calpain.
Experimental & Molecular Medicine 2001;33(4):245-250
The most efficient means of protein internalization from the membrane are through clathrin-coated pits, which concentrate protein interactions with the clathrin-associated assembly protein complex AP-2 and internalization signals in the cytoplasmic domain of transmembrane proteins. Binding of clathrin assembly protein to clathrin triskelia induces their assembly into clathrin-coated vesicles (CCVs). Due to a difficulty of isolating clathrin molecules from their complex or assembly state in the cells, most of the studies were carried out with recombinant clathrin proteins, which may present different conformation and structural variation. In this study, we have developed an efficient method of isolating the native clathrin assembly protein lymphoid myeloid (CALM) from the bovine brain that is enriched with clathrin and clathrin associated proteins and characterized by their sensitivity to proteases and it's ability to form CCV. The purified CALM has molecular weight of approximately 100,000 dalton on SDS-PAGE, which is consistent with the result of in vitro translation. The purified CALM protein could promote the assembly of clathrin triskelia into clathrin cage, and cleaved CALM proteolysed by caspase 3 and calpain could not promote them. In this respect, our data support a model in which CALM functions like AP180 as a monomeric clathrin assembly protein and might take part in apoptotic process in neuronal cells.
Adaptor Proteins
;
Animal
;
Brain Chemistry
;
Calpain/*metabolism
;
Carrier Proteins
;
Caspases/*metabolism
;
Cattle
;
Clathrin/*metabolism
;
Coated Pits, Cell-Membrane/*metabolism
;
Hydrolysis
;
Membrane Proteins
;
Molecular Weight
;
Nerve Tissue Proteins/chemistry/*isolation & purification/metabolism
;
Neurons/*chemistry
;
Protein Binding
;
Protein Conformation
;
Recombinant Proteins/chemistry/metabolism
6.Properties of GST-CALM expressed in E. coli.
Jeong Ah KIM ; Seong Ryul KIM ; Yong Keun JUNG ; So Youn WOO ; Ju Young SEOH ; Young Sook HONG ; Hyung Lae KIM
Experimental & Molecular Medicine 2000;32(2):93-99
Clathrin-coated vesicles (CCVs) are involved in protein and lipid trafficking between intracellular compartments in eukaryotic cells. CCVs are composed of clathrin and assembly proteins. The clathrin assembly protein lymphoid myeloid leukemia (CALM) gene, encodes a homologoue of the neuronal clathrin assembly protein AP180. In this study, we characterized the properties of the CALM expressed in E. coli. The molecular weight of bacterially expressed GST-CALM fusion protein was approximately 105 kD on SDS-PAGE. The CALM protein could promote clathrin triskelia into clathrin cages and could bind the preformed clathrin cage. However, 33 kD N-terminal domain of CALM could not bind pre-assembled clathrin cages, but assemble clathrin triskelia into clathrin cages. The CALM protein was bound to SH3 domain through N-terminal domain1, in vitro. The CALM protein is proteolyzed by caspase 3, caspase 8 and calpain through C-terminal domain.
Animal
;
Antibodies, Monoclonal
;
Calpain/chemistry
;
Caspases/chemistry
;
Clathrin-Coated Vesicles/metabolism*
;
Electrophoresis, Polyacrylamide Gel
;
Escherichia coli/metabolism
;
Escherichia coli/genetics
;
Female
;
Glutathione Transferase/genetics*
;
Mice
;
Mice, Inbred BALB C
;
Nerve Tissue Proteins/metabolism
;
Nerve Tissue Proteins/metabolism
;
Nerve Tissue Proteins/chemistry*
;
Phosphoproteins/metabolism
;
Phosphoproteins/genetics
;
Phosphoproteins/chemistry*
;
Protein Binding
;
Rabbits
;
Recombinant Fusion Proteins/metabolism
;
Recombinant Fusion Proteins/genetics
;
Recombinant Fusion Proteins/chemistry*
;
src Homology Domains