3.Metabolomics analysis of taxadiene producing yeasts.
Huifang YAN ; Mingzhu DING ; Yingjin YUAN
Chinese Journal of Biotechnology 2014;30(2):223-231
In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.
Alkenes
;
metabolism
;
Amino Acids
;
metabolism
;
Citric Acid
;
analysis
;
Citric Acid Cycle
;
Diterpenes
;
metabolism
;
Fermentation
;
Glycolysis
;
Metabolome
;
Metabolomics
;
Yeasts
;
metabolism
4.Addition of TCA cycle intermediates enhances pyruvate production.
Li-Ming LIU ; Yin LI ; Guo-Cheng DU ; Jian CHEN
Chinese Journal of Biotechnology 2004;20(1):115-119
The capability of utilizing the intermediates of TCA-cycle as the sole carbon source by the multi-vitamin auxotrophic yeast Torulopsis glabrata CCTCC M202019 under the conditions of vitamins limitation was demonstrated. Furthermore, the colony numbers grown on medium supplemented with glucose, acetate and one of the intermediates of TCA-cycle was higher than that of medium used glucose and acetate or medium used one of the intermediates of TCA-cycle carbon source. Among the intermediates of TCA-cycle used in this study, oxaloacetate was the best carbon source for the yeast and it was found that its presence stimulated the conversion of acetate to acetyl-CoA. In batch fermentation with glucose medium, the addition of 10 g/L of oxaloacetate improved the dry cell weight from 11.8 g/L to 13.6 g/L, and the productivity of pyruvate from 0.96 g x L(-1) x h(-1) to 1.19 g x L(-1) x h(-1), a 24% increase after 56 h growth. The yield of pyruvate on glucose was also improved as well, from 0.63 g/g to 0.66 g/g.
Candida glabrata
;
growth & development
;
metabolism
;
Citric Acid Cycle
;
Culture Media
;
Fermentation
;
Pyruvic Acid
;
metabolism
5.Effect of key notes of TCA cycle on L-glutamate production.
Zhina QIAO ; Meijuan XU ; Mengfei LONG ; Taowei YANG ; Xian ZHANG ; Nakanishi HIDEKI ; Zhiming RAO
Chinese Journal of Biotechnology 2020;36(10):2113-2125
Glutamic acid is an important amino acid with wide range of applications and huge market demand. Therefore, by performing transcriptome sequencing and re-sequencing analysis on Corynebacterium glutamicum E01 and high glutamate-producing strain C. glutamicum G01, we identified and selected genes with significant differences in transcription and gene levels in the central metabolic pathway that may have greatly influenced glutamate synthesis and further increased glutamic acid yield. The oxaloacetate node and α-ketoglutarate node play an important role in glutamate synthesis. The oxaloacetate node and α-ketoglutarate node were studied to explore effect on glutamate production. Based on the integrated strain constructed from the above experimental results, the growth rate in a 5-L fermenter was slightly lower than that of the original strain, but the glutamic acid yield after 48 h reached (136.1±5.53) g/L, higher than the original strain (93.53±4.52) g/L, an increase by 45.5%; sugar-acid conversion rate reached 58.9%, an increase of 13.7% compared to 45.2% of the original strain. The application of the above experimental strategy improved the glutamic acid yield and the sugar-acid conversion rate, and provided a theoretical basis for the metabolic engineering of Corynebacterium glutamicum.
Citric Acid Cycle
;
Corynebacterium glutamicum/metabolism*
;
Glutamic Acid/metabolism*
;
Metabolic Engineering
;
Metabolic Networks and Pathways/genetics*
6.A possible evolutionary role of formaldehyde.
Experimental & Molecular Medicine 1999;31(1):1-4
Formaldehyde is a compound which is believed to have had a role in evolutionary processes. On the other hand, the (methyl)glyoxalase pathway is a route being present in all biological organisms whereas its function has not yet been recognized in the biochemical machinery. In this article it is raised that (methyl)glyoxalase path might have functioned as a bridge between formose and archaic reductive citric acid cycles in surface metabolists at the early stage of evolution. According to the theory, formaldehyde was essential for the mentioned system as a raw molecule. Based on thermodynamic calculations a simple way of regulation is also shown. The simplicity of the theory may be in a good agreement with and an explanation of why the (methyl)glyoxalase system is of ubiquitous nature.
Citric Acid Cycle
;
Evolution, Chemical*
;
Formaldehyde/metabolism*
;
Lactoylglutathione Lyase/metabolism*
;
Thermodynamics
7.A Case of Suspected Fumarase Deficiency Presenting with Persistent Mild Metabolic Acidosis in Newborn Infant.
Doo Young CHOI ; Jon Soo KIM ; Youn Jeong SHIN ; Ho Jin PARK ; In Kyu LEE
Journal of the Korean Child Neurology Society 2005;13(2):257-261
Fumaric aciduria(fumarase deficiency) is a rare inborn error of metabolism resulted from a deficiency of fumarase, one of the constituent enzymes of the Krebs tricarboxylic acid cycle. Enzyme deficiency causes excessive urinary excretion of fumaric acid due to a defective conversion of fumaric acid to malic acid. It usually presents early in infancy with a severe encephalopathy including hypotonia, developmental retardation and frequent seizures. We report a case of suspected fumarase deficiency presenting with persistent mild metabolic acidosis associated with moderate hydrocephalus in a newborn infant.
Acidosis*
;
Citric Acid Cycle
;
Fumarate Hydratase*
;
Humans
;
Hydrocephalus
;
Infant, Newborn*
;
Metabolism
;
Muscle Hypotonia
;
Seizures
8.Metabolic flux analysis of L-serine synthesis by Corynebacterium glutamicum SYPS-062.
Xiaomei ZHANG ; Wenfang DOU ; Hongyu XU ; Zhenghong XU
Chinese Journal of Biotechnology 2010;26(10):1363-1371
Corynebacterium glutamicum SYPS-062 was an L-serine producing strain stored at our lab and could produce L-serine directly from sugar. We studied the effects of cofactors in one carbon unit metabolism-folate and VB12 on the cell growth, sucrose consumption and L-serine production by SYPS-062. In the same time, the metabolic flux distribution was determined in different conditions. The supplementation of folate or VB12 enhanced the cell growth, energy synthesis, and finally increased the flux of pentose phosphate pathway (HMP), whereas the carbon flux to L-serine was decreased. The addition of VB12 not only increased the ratio of L-serine synthesis pathway on G3P joint, but also caused the insufficiency of tricarboxylic acid cycle (TCA) flux, which needed more anaplerotic reaction flux to replenish TCA cycle, that was an important limiting factor for the further increasing of the L-serine productivity.
Citric Acid Cycle
;
physiology
;
Corynebacterium glutamicum
;
metabolism
;
Fermentation
;
Folic Acid
;
pharmacology
;
Serine
;
biosynthesis
;
Vitamin B 12
;
pharmacology
9.Biochemical Characteristics of The Na-alpha-Ketoglutarate Cotransport System in Proximal Convoluted and Straight Tubules of the Rabbit Kidney.
Do Whan AHN ; Kyoung Ryong KIM ; Hee Seok PARK ; Yang Saeng PARK
Korean Journal of Nephrology 2007;26(1):5-13
PURPOSE: alpha-Ketoglutarate (alphaKG), a Krebs cycle intermediate, is extensively used in the kidney as a fuel substrate and as a counter anion for organic acid secretion. It is known to be taken up by the proximal tubule cells via the brush-border as well as basolateral membranes. We explored biochemical characteristics of the brush-border and basolateral alphaKG transport systems in pars convoluta and pars recta of the proximal tubule, respectively. METHODS: Brush-border and basolateral membrane vesicles (BBMV and BLMV) were isolated from rabbit renal outer cortex and outer medulla by Percoll gradient centrifugation. Vesicular uptake of alphaKG was determined by rapid Millipore filtration method using alpha-14[C]KG as a substrate. RESULTS: Both BBMV and BLMV showed a Na-gradient dependent uphill transport of alphaKG. The systems in both membranes were similarly inhibited by Li and activated by Na (Hill coefficient of 1.4). Kinetic analyses indicated that the Na-alphaKG cotransporters in the BBMV had a lower substrate affinity as compared with those in the BLMV. The transport systems in BLMVs showed a similar Km but different Vmax between the outer cortex (Km: 34 uM, Vmax: 3.3 nmol/mg protein/10s) and outer medulla (Km: 37, Vmax: 1.8). On the other hand, the systems in BBMVs were different in both Km and Vmax between the outer cortex (Km: 194, Vmax: 3.3) and outer medulla (Km: 89, Vmax: 1.7). CONCLUSION: The findings suggest that both axial and apical to basolateral heterogeneity of the Na-alphaKG cotransport system in proximal tubules may be due to a physiological adaptation to efficiently utilize alphaKG in the kidney.
Adaptation, Physiological
;
Biological Transport, Active
;
Centrifugation
;
Citric Acid Cycle
;
Filtration
;
Hand
;
Ketoglutaric Acids
;
Kidney Tubules
;
Kidney*
;
Membranes
;
Population Characteristics
;
Symporters
10.Fumarase Deficiency with Spastic Quadriplegia: A case report.
Kyung Heui JUNG ; Joo Hyun PARK ; Young Jin KO ; So Eui LEE
Journal of the Korean Academy of Rehabilitation Medicine 2000;24(4):793-798
Fumarase catalyzes the conversion of fumarate to malate in the Krebs cycle. Fumarase deficiency is a rare inborn error of metabolism and is inherited in an autosomal recessive manner. It causes mitochondrial encephalomyopathy. The symptom is characterized by developmental delay and hypotonia. We report here a case of a 32-month-old child who was initially refered because of spastic quadriplegia, delayed development and poor feeding.
Child
;
Child, Preschool
;
Citric Acid Cycle
;
Fumarate Hydratase*
;
Humans
;
Metabolism
;
Mitochondrial Encephalomyopathies
;
Muscle Hypotonia
;
Muscle Spasticity*
;
Quadriplegia*