1.Identification and expression analysis of citrate synthase 3 gene family members in apple.
Xinrui LI ; Wenfang LI ; Jiaxing HUO ; Long LI ; Baihong CHEN ; Zhigang GUO ; Zonghuan MA
Chinese Journal of Biotechnology 2024;40(1):137-149
As one of the key enzymes in cell metabolism, the activity of citrate synthase 3 (CS3) regulates the substance and energy metabolism of organisms. The protein members of CS3 family were identified from the whole genome of apple, and bioinformatics analysis was performed and expression patterns were analyzed to provide a theoretical basis for studying the potential function of CS3 gene in apple. BLASTp was used to identify members of the apple CS3 family based on the GDR database, and the basic information of CS3 protein sequence, subcellular localization, domain composition, phylogenetic relationship and chromosome localization were analyzed by Pfam, SMART, MEGA5.0, clustalx.exe, ExPASy Proteomics Server, MEGAX, SOPMA, MEME, WoLF PSORT and other software. The tissue expression and inducible expression characteristics of 6 CS3 genes in apple were determined by acid content and real-time fluorescence quantitative polymerase chain reaction (qRT-PCR). Apple CS3 gene family contains 6 members, and these CS3 proteins contain 473-608 amino acid residues, with isoelectric point distribution between 7.21 and 8.82. Subcellular localization results showed that CS3 protein was located in mitochondria and chloroplasts, respectively. Phylogenetic analysis divided them into 3 categories, and the number of genes in each subfamily was 2. Chromosome localization analysis showed that CS3 gene was distributed on different chromosomes of apple. The secondary structure of protein is mainly α-helix, followed by random curling, and the proportion of β-angle is the smallest. The 6 members were all expressed in different apple tissues. The overall expression trend from high to low was the highest relative expression content of MdCS3.4, followed by MdCS3.6, and the relative expression level of other members was in the order of MdCS3.3 > MdCS3.2 > MdCS3.1 > MdCS3.5. qRT-PCR results showed that MdCS3.1 and MdCS3.3 genes had the highest relative expression in the pulp of 'Chengji No. 1' with low acid content, and MdCS3.2 and MdCS3.3 genes in the pulp of 'Asda' with higher acid content had the highest relative expression. Therefore, in this study, the relative expression of CS3 gene in apple cultivars with different acid content in different apple varieties was detected, and its role in apple fruit acid synthesis was analyzed. The experimental results showed that the relative expression of CS3 gene in different apple varieties was different, which provided a reference for the subsequent study of the quality formation mechanism of apple.
Citric Acid
;
Malus/genetics*
;
Citrate (si)-Synthase
;
Phylogeny
;
Citrates
2.Molecular Detection of Tick-borne Pathogens in Ticks Collected from Hainan Island, China.
Miao LU ; Guang Peng TANG ; Xiao Song BAI ; Xin Cheng QIN ; Wen WANG ; Wen Ping GUO ; Kun LI
Biomedical and Environmental Sciences 2021;34(7):581-586
Pathogens like bacteria and protozoa, which affect human and animal health worldwide, can be transmitted by vectors like ticks. To investigate the epidemiology and genetic diversity of bacteria and protozoans carried by ticks in Chengmai county of Hainan province, China, 285 adult hard ticks belonging to two species [
Anaplasmataceae/isolation & purification*
;
Animals
;
Chaperonin 60/genetics*
;
China
;
Citrate (si)-Synthase/genetics*
;
Coccidia/isolation & purification*
;
Coxiellaceae/isolation & purification*
;
Insect Vectors/microbiology*
;
Islands
;
Ixodidae/microbiology*
;
Phylogeny
;
Piroplasmia/isolation & purification*
;
RNA, Ribosomal, 16S/genetics*
;
RNA, Ribosomal, 18S/genetics*
3.Study on the chaperone properties of conserved GTPases.
Xiang WANG ; Jiaying XUE ; Zhe SUN ; Yan QIN ; Weimin GONG
Protein & Cell 2012;3(1):44-50
As a large family of hydrolases, GTPases are widespread in cells and play the very important biological function of hydrolyzing GTP into GDP and inorganic phosphate through binding with it. GTPases are involved in cell cycle regulation, protein synthesis, and protein transportation. Chaperones can facilitate the folding or refolding of nascent peptides and denatured proteins to their native states. However, chaperones do not occur in the native structures in which they can perform their normal biological functions. In the current study, the chaperone activity of the conserved GTPases of Escherichia coli is tested by the chemical denaturation and chaperone-assisted renaturation of citrate synthase and α-glucosidase. The effects of ribosomes and nucleotides on the chaperone activity are also examined. Our data indicate that these conserved GTPases have chaperone properties, and may be ancestral protein folding factors that have appeared before dedicated chaperones.
Citrate (si)-Synthase
;
chemistry
;
Cloning, Molecular
;
Conserved Sequence
;
Escherichia coli
;
cytology
;
enzymology
;
GTP Phosphohydrolases
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Guanosine Diphosphate
;
pharmacology
;
Guanosine Triphosphate
;
analogs & derivatives
;
pharmacology
;
Molecular Chaperones
;
chemistry
;
genetics
;
isolation & purification
;
metabolism
;
Protein Denaturation
;
drug effects
;
Protein Renaturation
;
drug effects
;
Ribosomes
;
metabolism
;
alpha-Glucosidases
;
chemistry