2.Dynein axonemal heavy chain 10 deficiency causes primary ciliary dyskinesia in humans and mice.
Rongchun WANG ; Danhui YANG ; Chaofeng TU ; Cheng LEI ; Shuizi DING ; Ting GUO ; Lin WANG ; Ying LIU ; Chenyang LU ; Binyi YANG ; Shi OUYANG ; Ke GONG ; Zhiping TAN ; Yun DENG ; Yueqiu TAN ; Jie QING ; Hong LUO
Frontiers of Medicine 2023;17(5):957-971
Primary ciliary dyskinesia (PCD) is a congenital, motile ciliopathy with pleiotropic symptoms. Although nearly 50 causative genes have been identified, they only account for approximately 70% of definitive PCD cases. Dynein axonemal heavy chain 10 (DNAH10) encodes a subunit of the inner arm dynein heavy chain in motile cilia and sperm flagella. Based on the common axoneme structure of motile cilia and sperm flagella, DNAH10 variants are likely to cause PCD. Using exome sequencing, we identified a novel DNAH10 homozygous variant (c.589C > T, p.R197W) in a patient with PCD from a consanguineous family. The patient manifested sinusitis, bronchiectasis, situs inversus, and asthenoteratozoospermia. Immunostaining analysis showed the absence of DNAH10 and DNALI1 in the respiratory cilia, and transmission electron microscopy revealed strikingly disordered axoneme 9+2 architecture and inner dynein arm defects in the respiratory cilia and sperm flagella. Subsequently, animal models of Dnah10-knockin mice harboring missense variants and Dnah10-knockout mice recapitulated the phenotypes of PCD, including chronic respiratory infection, male infertility, and hydrocephalus. To the best of our knowledge, this study is the first to report DNAH10 deficiency related to PCD in human and mouse models, which suggests that DNAH10 recessive mutation is causative of PCD.
Humans
;
Male
;
Animals
;
Mice
;
Semen/metabolism*
;
Dyneins/metabolism*
;
Cilia/metabolism*
;
Mutation
;
Ciliary Motility Disorders/genetics*
3.Genetic testing and prenatal diagnosis for a Chinese pedigree affected with Meckel-Gruber syndrome.
Zhihui JIAO ; Ganye ZHAO ; Lina LIU ; Yu GUO ; Xiangdong KONG
Chinese Journal of Medical Genetics 2021;38(12):1204-1207
OBJECTIVE:
To carry out genetic testing and prenatal diagnosis for a Chinese couple whom had conceived two fetuses featuring multiple malformations including polycystic kidney, polydactyly and encephalocele.
METHODS:
Following elective abortion, the fetus from the second pregnancy was subjected to whole exome sequencing. Suspected pathogenic variants were verified by Sanger sequencing of the fetus and its parents.
RESULTS:
The fetus was found to harbor compound heterozygous variants of the CEP290 gene, namely c.2743G>T (p.E915X) and c.2587-2A>T, which were respectively inherited from its father and mother. The same variants were not detected among 100 healthy controls nor reported previously. Bioinformatic analysis suggested both variants to be deleterious. The fetus was diagnosed with Meckel-Gruber syndrome. Prenatal diagnosis for the couple during their next pregnancy suggested that the fetus did not carry the above pathogenic variants.
CONCLUSION
The compound heterozygous variants of the CEP290 gene probably underlay the pathogenesis of Meckel-Gruber syndrome in the second fetus. Above finding has provided a basis for genetic counseling and prenatal diagnosis for the couple, and also enriched the mutational spectrum of the CEP290 gene.
China
;
Ciliary Motility Disorders
;
Encephalocele/genetics*
;
Female
;
Genetic Testing
;
Humans
;
Pedigree
;
Polycystic Kidney Diseases/genetics*
;
Pregnancy
;
Prenatal Diagnosis
;
Retinitis Pigmentosa
4.Analysis of a Chinese pedigree affected with Meckel syndrome due to variants of TMEM67 gene.
Ganye ZHAO ; Xiaoyan ZHAO ; Xuechao ZHAO ; Conghui WANG ; Zhihui JIAO ; Qianqian LI ; Xiangdong KONG
Chinese Journal of Medical Genetics 2023;40(10):1236-1240
OBJECTIVE:
To explore the genetic etiology for a Chinese pedigree affected with Meckel syndrome.
METHODS:
A pedigree with a history of three consecutive adverse pregnancies which presented at the First Affiliated Hospital of Zhengzhou University on August 31, 2017 was selected as the study subject. Clinical data of the pedigree were collected. High-throughput sequencing was carried out to screen for variants of ciliopathy-related genes in the third fetus following induced abortion, and candidate variant was verified by Sanger sequencing.
RESULTS:
The first pregnancy of the couple had ended as spontaneous abortion, whilst the fetus of the second pregnancy was suspected for having ciliopathy, though no genetic testing was carried out following elected abortion. The fetus of the third pregnancy was suspected for having ciliopathy, and high-throughput sequencing and Sanger sequencing had shown that the fetus had harbored compound heterozygous variants of the TMEM67 gene, including c.978+1G>A from the father and c.1288G>C (p.D430H) from the mother. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), the c.978+1G>A was classified as a pathogenic variant (PVS1+PM2_Supporting+PP5), whilst the newly discovered c.1288G>C (p.D430H) was classified as a likely pathogenic variant (PM2_Supporting+PM3+PM5+PP3).
CONCLUSION
The c.978+1G>A and c.1288G>C (p.D430H) compound heterozygous variants of the TMEM67 gene probably underlay the three consecutive adverse pregnancies suspected for ciliopathy in this pedigree. The discovery of c.1288G>C (p.D430H) has also expanded the mutational spectrum of the TMEM67 gene.
Female
;
Pregnancy
;
Humans
;
Pedigree
;
East Asian People
;
Ciliary Motility Disorders/genetics*
;
Ciliopathies
;
Abortion, Spontaneous
;
Membrane Proteins/genetics*