1.Primary cilium acts as an oxygen sensor in PC12 cells.
Yuhai GAO ; Xinzhu QI ; Jian ZHOU ; Xin WANG ; Keming CHEN ; Huiping MA
Journal of Zhejiang University. Medical sciences 2017;46(6):618-624
Objective: To investigate the function of primary cilium as an oxygen sensor in PC12 cells. Methods: The PC12 cells were transfected with IFT88 siRNA. The nuclear translocation of hypoxia inducible factor-1α (HIF-1α), nuclear factor erythroid-2 related factor 2 (Nrf2), and ciliogenesis were observed by immunofluorescence staining; and the mRNA expressions of HIF-1α, Nrf2, vascular endothelial growth factor (VEGF) and superoxide dismutase (SOD) were detected by real-time RT-PCR. Results: The ciliogenesis was inhibited in PC12 cells transfected with IFT88 siRNA. In hypoxia group and scramble control group, nuclear translocations of HIF-1α and Nrf2 were observed and mRNA expressions of HIF-1α, Nrf2, VEGF were increased, and those of SOD were decreased. While in PC12 cells transfected with IFT88 siRNA, nuclear translocations of HIF-1α and Nrf2 were not observed, and mRNA expressions of HIF-1α, Nrf2, VEGF were inhibited, and mRNA expression of SOD was increased. Conclusion: Primary cilia may act as an oxygen sensor to transfer the information related to hypoxia and oxidative stress into cells, activating intracellular defense mechanism against the hypoxic injuries.
Animals
;
Cilia
;
metabolism
;
Gene Expression Regulation
;
drug effects
;
Oxygen
;
metabolism
;
PC12 Cells
;
Rats
2.Acute-Onset Bilateral Myopia and Ciliochoroidal Effusion Induced by Hydrochlorothiazide.
Young Rae ROH ; Se Joon WOO ; Kyu Hyung PARK
Korean Journal of Ophthalmology 2011;25(3):214-217
The authors experienced two cases of hydrochlorothiazide (HCTZ)-induced acute-onset bilateral myopia and shallowing of the anterior chambers. Two middle-aged women taking HCTZ, a sulfa derivative, visited our clinic complaining of acute bilateral visual deterioration. Both had good visual acuity without corrective lenses before taking HCTZ. A complete ophthalmologic examination revealed bilateral myopic shift, intraocular pressure elevation, shallowing of the anterior chambers, choroidal effusions, radiating retinal folds, and conjunctival chemosis. Approximately one week after HCTZ discontinuance, all ocular changes disappeared completely. Physicians should be aware of the adverse ocular effects of HCTZ and should manage patients accordingly.
Acute Disease
;
Adult
;
Anterior Chamber/drug effects
;
Choroid/drug effects/*metabolism
;
Cilia/drug effects/*metabolism
;
Diuretics/*adverse effects
;
Exudates and Transudates/*metabolism
;
Female
;
Humans
;
Hydrochlorothiazide/*adverse effects
;
Intraocular Pressure/drug effects
;
Middle Aged
;
Myopia/*chemically induced
3.Establishment of osteoblast primary cilia model removed by chloral hyrate.
Xiao-ni MA ; Wen-gui SHI ; Yan-fang XIE ; Hui-ping MA ; Bao-feng GE ; Ping ZHEN ; Ke-ming CHEN
China Journal of Orthopaedics and Traumatology 2015;28(6):547-552
OBJECTIVETo establish osteoblast model, primary cilla model was removed by chloral hyrate, observe effects of osteoblast primary cilla moved on enhancing ALP staining and calcified nodules staining in electromagnetic field.
METHODSThree 3-day-old male SD rats weighed between 6 and 9 g were killed, cranial osteoblast was drawed and adherencing cultured respectively. Cells were subcultured and randomly divided into 4 groups until reach to fusion states. The four groups included chloral hydrate non-involved group (control group), 2 mM, 4 mM and 8 mM chloral hydrate group, and cultured in 37 °C, 5% CO2 incubator for 72 h. Morphology of primary cilla was observed by laser confocal scanning microscope, and incidence of osteoblast primary cilia was analyzed by Image-Pro Plus 6.0 software. Cells in the correct concentration group which can removed cillia most effectively were selected and divided into 3 groups, including control group (C), Electromagnetic fields group (EMFs), and EMFs with 4 mM chloral hydrate group. DMEM nutrient solution contained 10%FBS were added into three groups and cultured for 9 days and formation of ALP were observed by histochemical staining of alkaline phosphatase. After 12 days' cultivation, formation of mineralization nodes was observed by alizarin red staining.
RESULTSCompared with control group and 2mM chloral hydrate group,4 mM chloral hydrate group could effectively remove osteoblast primary cilla (P<0.01). Removal of osteoblast primary cilla could weaken the formation of ALP and mineralization nodes in osteoblast in EMFS. Compared with EMFs group, the area of ALP and mineralization nodes in EMFs with 4 mM chloral hydrate group were decreased obviously (P<0.01).
CONCLUSION4mM chloral hydrate could effectively remove osteoblast primary cilia. Primary cilla participate in EMFs promoting formation of ALP and mineralization nodes in osteoblast and provide new ideas for exploring mechanism of EMFs promoting osteoblast maturation and mineralization.
Alkaline Phosphatase ; metabolism ; Animals ; Cell Culture Techniques ; instrumentation ; methods ; Cells, Cultured ; Chloral Hydrate ; pharmacology ; Cilia ; drug effects ; enzymology ; physiology ; Male ; Osteoblasts ; cytology ; enzymology ; Rats ; Rats, Sprague-Dawley
4.Effect of absorption enhancers on nasal ginsenoside Rg1 delivery and its nasal ciliotoxicity.
Xin-mei CHEN ; Jia-bi ZHU ; Wei-dong SUN ; Li-jian ZHANG
Acta Pharmaceutica Sinica 2006;41(2):149-155
AIMThe enhancing activity and safety of several absorption enhancers were evaluated as potential nasal absorption enhancers to increase intranasal absorption of ginsenoside Rg1.
METHODSNasal circulatory perfusion test in vivo had been employed to investigate the effect of absorption enhancers for nasal mucosa absorption of ginsenoside Rgl in rats. The safety of the absorption enhancers were evaluated by testing cilia movement of the in situ toad palate model, the hemolysis of erythrocyte membrane of the rabbit, leaching of protein and LDH from the mice nasal mucosa and the effect on cilia structural and specific cellular changes of nasal mucosa.
RESULTSAbsorption enhancers were necessary to facilitate ginsenoside Rg1 absorption by nasal mucosa. Among the absorption enhancers 1% sodium deoxycholate had great effect to facilite ginsenoside Rgl absorption by nasal mucosa; 1% dipotassium glycyrrhizinate and 1% azone had moderate effect to facilitate ginsenoside Rg1 absorption by nasal mucosa; 1% Tween-80, 2% beta-cyclodextrin, 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan, 5% hydroxypropyl-beta-cyclodextrin and 0.1% EDTA had low effect to facilitate ginsenoside Rgl absorption by nasal mucosa. 1% sodium deoxycholate, 1% azone and 1% dipotassium glycyrrhizinate had serious nasal toxicity; 1% Tween-80, 2% beta-cyclodextrin, 5% hydroxypropyl-beta-cyclodextrin had moderate nasal toxicity; 0.5% borneol (dissolved in paraffin liquid), 0.5% chitosan and 0.1% EDTA have little nasal toxicity.
CONCLUSION0.5% borneol and 0.5% chitosan were the promising candidates having a good balance between enhancing activity and safety for nasal ginsenoside Rg1 delivery.
Absorption ; Administration, Intranasal ; Animals ; Bornanes ; pharmacology ; toxicity ; Bufo bufo ; Chitosan ; pharmacology ; toxicity ; Cilia ; drug effects ; Deoxycholic Acid ; pharmacology ; toxicity ; Drug Synergism ; Female ; Ginsenosides ; administration & dosage ; pharmacokinetics ; Male ; Mice ; Mice, Inbred ICR ; Nasal Mucosa ; drug effects ; metabolism ; pathology ; Rabbits ; Rats ; Rats, Sprague-Dawley