7.Awareness and attitudes of elderly Southeast Asian adults towards telehealth during the COVID-19 pandemic: a qualitative study.
Ryan Eyn Kidd MAN ; Aricia Xin Yi HO ; Ester Pei Xuan LEE ; Eva Katie Diana FENWICK ; Amudha ARAVINDHAN ; Kam Chun HO ; Gavin Siew Wei TAN ; Daniel Shu Wei TING ; Tien Yin WONG ; Khung Keong YEO ; Su-Yen GOH ; Preeti GUPTA ; Ecosse Luc LAMOUREUX
Singapore medical journal 2025;66(5):256-264
INTRODUCTION:
We aimed to understand the awareness and attitudes of elderly Southeast Asians towards telehealth services during the coronavirus disease 2019 (COVID-19) pandemic in this study.
METHODS:
In this qualitative study, 78 individuals from Singapore (51.3% female, mean age 73.0 ± 7.6 years) were interviewed via telephone between 13 May 2020 and 9 June 2020 during Singapore's first COVID-19 'circuit breaker'. Participants were asked to describe their understanding of telehealth, their experience of and willingness to utilise these services, and the barriers and facilitators underlying their decision. Transcripts were analysed using thematic analysis, guided by the United Theory of Acceptance Use of Technology framework.
RESULTS:
Of the 78 participants, 24 (30.8%) were able to describe the range of telehealth services available and 15 (19.2%) had previously utilised these services. Conversely, 14 (17.9%) participants thought that telehealth comprised solely home medication delivery and 50 (51.3%) participants did not know about telehealth. Despite the advantages offered by telehealth services, participants preferred in-person consultations due to a perceived lack of human interaction and accuracy of diagnoses, poor digital literacy and a lack of access to telehealth-capable devices.
CONCLUSION
Our results showed poor overall awareness of the range of telehealth services available among elderly Asian individuals, with many harbouring erroneous views regarding their use. These data suggest that public health education campaigns are needed to improve awareness of and correct negative perceptions towards telehealth services in elderly Asians.
Humans
;
COVID-19/epidemiology*
;
Female
;
Telemedicine
;
Aged
;
Male
;
Singapore/epidemiology*
;
Qualitative Research
;
Health Knowledge, Attitudes, Practice
;
SARS-CoV-2
;
Aged, 80 and over
;
Middle Aged
;
Pandemics
;
Awareness
;
Asian People
;
Southeast Asian People
8.Predictors for Failed Removal of Nasogastric Tube in Patients With Brain Insult
Shih-Ting HUANG ; Tyng-Guey WANG ; Mei-Chih PENG ; Wan-Ming CHEN ; An-Tzu JAO ; Fuk Tan TANG ; Yu-Ting HSIEH ; Chun Sheng HO ; Shu-Ming YEH
Annals of Rehabilitation Medicine 2024;48(3):220-227
Objective:
To construct a prognostic model for unsuccessful removal of nasogastric tube (NGT) was the aim of our study.
Methods:
This study examined patients with swallowing disorders receiving NGT feeding due to stroke or traumatic brain injury in a regional hospital. Clinical data was collected, such as age, sex, body mass index (BMI), level of activities of daily living (ADLs) dependence. Additionally, gather information regarding the enhancement in Functional Oral Intake Scale (FOIS) levels and the increase in food types according to the International Dysphagia Diet Standardization Initiative (IDDSI) after one month of swallowing training. A stepwise logistic regression analysis model was employed to predict NGT removal failure using these parameters.
Results:
Out of 203 patients, 53 patients (26.1%) had experienced a failed removal of NGT after six months of follow-up. The strongest predictors for failed removal were age over 60 years, underweight BMI, total dependence in ADLs, and ischemic stroke. The admission prediction model categorized patients into high, moderate, and low-risk groups for removal failure. The failure rate of NGT removal was high not only in the high-risk group but also in the moderate-risk groups when there was no improvement in FOIS levels and IDDSI food types.
Conclusion
Our predictive model categorizes patients with brain insults into risk groups for swallowing disorders, enabling advanced interventions such as percutaneous endoscopic gastrostomy for high-risk patients struggling with NGT removal, while follow-up assessments using FOIS and IDDSI aid in guiding rehabilitation decisions for those at moderate risk.
9.Conventional and machine learning-based risk scores for patients with early-stage hepatocellular carcinoma
Chun-Ting HO ; Elise Chia-Hui TAN ; Pei-Chang LEE ; Chi-Jen CHU ; Yi-Hsiang HUANG ; Teh-Ia HUO ; Yu-Hui SU ; Ming-Chih HOU ; Jaw-Ching WU ; Chien-Wei SU
Clinical and Molecular Hepatology 2024;30(3):406-420
Background/Aims:
The performance of machine learning (ML) in predicting the outcomes of patients with hepatocellular carcinoma (HCC) remains uncertain. We aimed to develop risk scores using conventional methods and ML to categorize early-stage HCC patients into distinct prognostic groups.
Methods:
The study retrospectively enrolled 1,411 consecutive treatment-naïve patients with the Barcelona Clinic Liver Cancer (BCLC) stage 0 to A HCC from 2012 to 2021. The patients were randomly divided into a training cohort (n=988) and validation cohort (n=423). Two risk scores (CATS-IF and CATS-INF) were developed to predict overall survival (OS) in the training cohort using the conventional methods (Cox proportional hazards model) and ML-based methods (LASSO Cox regression), respectively. They were then validated and compared in the validation cohort.
Results:
In the training cohort, factors for the CATS-IF score were selected by the conventional method, including age, curative treatment, single large HCC, serum creatinine and alpha-fetoprotein levels, fibrosis-4 score, lymphocyte-tomonocyte ratio, and albumin-bilirubin grade. The CATS-INF score, determined by ML-based methods, included the above factors and two additional ones (aspartate aminotransferase and prognostic nutritional index). In the validation cohort, both CATS-IF score and CATS-INF score outperformed other modern prognostic scores in predicting OS, with the CATSINF score having the lowest Akaike information criterion value. A calibration plot exhibited good correlation between predicted and observed outcomes for both scores.
Conclusions
Both the conventional Cox-based CATS-IF score and ML-based CATS-INF score effectively stratified patients with early-stage HCC into distinct prognostic groups, with the CATS-INF score showing slightly superior performance.

Result Analysis
Print
Save
E-mail