3.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
6.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
9.Predictive Modeling of Symptomatic Intracranial Hemorrhage Following Endovascular Thrombectomy: Insights From the Nationwide TREAT-AIS Registry
Jia-Hung CHEN ; I-Chang SU ; Yueh-Hsun LU ; Yi-Chen HSIEH ; Chih-Hao CHEN ; Chun-Jen LIN ; Yu-Wei CHEN ; Kuan-Hung LIN ; Pi-Shan SUNG ; Chih-Wei TANG ; Hai-Jui CHU ; Chuan-Hsiu FU ; Chao-Liang CHOU ; Cheng-Yu WEI ; Shang-Yih YAN ; Po-Lin CHEN ; Hsu-Ling YEH ; Sheng-Feng SUNG ; Hon-Man LIU ; Ching-Huang LIN ; Meng LEE ; Sung-Chun TANG ; I-Hui LEE ; Lung CHAN ; Li-Ming LIEN ; Hung-Yi CHIOU ; Jiunn-Tay LEE ; Jiann-Shing JENG ;
Journal of Stroke 2025;27(1):85-94
Background:
and Purpose Symptomatic intracranial hemorrhage (sICH) following endovascular thrombectomy (EVT) is a severe complication associated with adverse functional outcomes and increased mortality rates. Currently, a reliable predictive model for sICH risk after EVT is lacking.
Methods:
This study used data from patients aged ≥20 years who underwent EVT for anterior circulation stroke from the nationwide Taiwan Registry of Endovascular Thrombectomy for Acute Ischemic Stroke (TREAT-AIS). A predictive model including factors associated with an increased risk of sICH after EVT was developed to differentiate between patients with and without sICH. This model was compared existing predictive models using nationwide registry data to evaluate its relative performance.
Results:
Of the 2,507 identified patients, 158 developed sICH after EVT. Factors such as diastolic blood pressure, Alberta Stroke Program Early CT Score, platelet count, glucose level, collateral score, and successful reperfusion were associated with the risk of sICH after EVT. The TREAT-AIS score demonstrated acceptable predictive accuracy (area under the curve [AUC]=0.694), with higher scores being associated with an increased risk of sICH (odds ratio=2.01 per score increase, 95% confidence interval=1.64–2.45, P<0.001). The discriminatory capacity of the score was similar in patients with symptom onset beyond 6 hours (AUC=0.705). Compared to existing models, the TREAT-AIS score consistently exhibited superior predictive accuracy, although this difference was marginal.
Conclusions
The TREAT-AIS score outperformed existing models, and demonstrated an acceptable discriminatory capacity for distinguishing patients according to sICH risk levels. However, the differences between models were only marginal. Further research incorporating periprocedural and postprocedural factors is required to improve the predictive accuracy.
10.4 Weeks of HIIT Modulates Metabolic Homeostasis of Hippocampal Pyruvate-lactate Axis in CUMS Rats Improving Their Depression-like Behavior
Yu-Mei HAN ; Chun-Hui BAO ; Zi-Wei ZHANG ; Jia-Ren LIANG ; Huan XIANG ; Jun-Sheng TIAN ; Shi ZHOU ; Shuang-Shuang WU
Progress in Biochemistry and Biophysics 2025;52(6):1468-1483
ObjectiveTo investigate the role of 4-week high-intensity interval training (HIIT) in modulating the metabolic homeostasis of the pyruvate-lactate axis in the hippocampus of rats with chronic unpredictable mild stress (CUMS) to improve their depressive-like behavior. MethodsForty-eight SPF-grade 8-week-old male SD rats were randomly divided into 4 groups: the normal quiet group (C), the CUMS quiet group (M), the normal exercise group (HC), and the CUMS exercise group (HM). The M and HM groups received 8 weeks of CUMS modeling, while the HC and HM groups were exposed to 4 weeks of HIIT starting from the 5th week (3 min (85%-90%) Smax+1 min (50%-55%) Smax, 3-5 cycles, Smax is the maximum movement speed). A lactate analyzer was used to detect the blood lactate concentration in the quiet state of rats in the HC and HM groups at week 4 and in the 0, 2, 4, 8, 12, and 24 h after exercise, as well as in the quiet state of rats in each group at week 8. Behavioral indexes such as sucrose preference rate, number of times of uprightness and number of traversing frames in the absenteeism experiment, and other behavioral indexes were used to assess the depressive-like behavior of the rats at week 4 and week 8. The rats were anesthetized on the next day after the behavioral test in week 8, and hippocampal tissues were taken for assay. LC-MS non-targeted metabolomics, target quantification, ELISA and Western blot were used to detect the changes in metabolite content, lactate and pyruvate concentration, the content of key metabolic enzymes in the pyruvate-lactate axis, and the protein expression levels of monocarboxylate transporters (MCTs). Results4-week HIIT intervention significantly increased the sucrose preference rate, the number of uprights and the number of traversed frames in the absent field experiment in CUMS rats; non-targeted metabolomics assay found that 21 metabolites were significantly changed in group M compared to group C, and 14 and 11 differential metabolites were significantly dialed back in the HC and HM groups, respectively, after the 4-week HIIT intervention; the quantitative results of the targeting showed that, compared to group C, lactate concentration in the hippocampal tissues of M group, compared with group C, lactate concentration in hippocampal tissue was significantly reduced and pyruvate concentration was significantly increased, and 4-week HIIT intervention significantly increased the concentration of lactate and pyruvate in hippocampal tissue of HM group; the trend of changes in blood lactate concentration was consistent with the change in lactate concentration in hippocampal tissue; compared with group C, the LDHB content of group M was significantly increased, the content of PKM2 and PDH, as well as the protein expression level of MCT2 and MCT4 were significantly reduced. The 4-week HIIT intervention upregulated the PKM2 and PDH content as well as the protein expression levels of MCT2 and MCT4 in the HM group. ConclusionThe 4-week HIIT intervention upregulated blood lactate concentration and PKM2 and PDH metabolizing enzymes in hippocampal tissues of CUMS rats, and upregulated the expression of MCT2 and MCT4 transport carrier proteins to promote central lactate uptake and utilization, which regulated metabolic homeostasis of the pyruvate-lactate axis and improved depressive-like behaviors.

Result Analysis
Print
Save
E-mail