1.Capsaicin-Sensitive Sensory Nerves Indirectly Modulate Motor Function of the Urinary Bladder.
Hsi Hsien CHANG ; Shang Jen CHANG ; Cheng Hsing HSIEH ; Chun Kai HSU ; Stephen Shei Dei YANG
International Neurourology Journal 2018;22(2):83-89
PURPOSE: The urinary bladder (UB) is innervated by both sensory and autonomic nerves. Recent studies have shown that sensory neuropeptides induced contractions in the detrusor muscle. Therefore, in a mouse model, we investigated the presence of interactions between the submucosal sensory nerves and the autonomic nerves that regulate the motor function of the detrusor muscle. METHODS: UB samples from male C57BL/6 mice were isolated, cut into strips, and mounted in an organ bath. Dose-response curves to norepinephrine and phenylephrine were studied in UB strips with and without mucosa, and the effects of preincubation with a receptor antagonist and various drugs on relaxation were also studied using tissue bath myography. RESULTS: Phenylephrine-induced relaxation of the UB strips showed concentration-related effects. This relaxation appeared in both mucosa-intact and mucosa-denuded UB strips, and was significantly inhibited by lidocaine, silodosin, and guanethidine (an adrenergic neuronal blocker). Meanwhile, phenylephrine-induced relaxation was inhibited by pretreatment with propranolol and calcitonin gene-related peptide (CGRP)–depletory capsaicin in UB strips with and without mucosa. CONCLUSIONS: The present study suggests that phenylephrine activates the α-1A adrenergic receptor (AR) of the sensory nerve, and then activates capsaicin-sensitive sensory nerves to release an unknown substance that facilitates the release of norepinephrine from adrenergic nerves. Subsequently, norepinephrine stimulates β-ARs in the detrusor muscle in mice, leading to neurogenic relaxation of the UB. Further animal and human studies are required to prove this concept and to validate its clinical usefulness.
Adrenergic Neurons
;
Animals
;
Autonomic Pathways
;
Baths
;
Calcitonin Gene-Related Peptide
;
Capsaicin
;
Guanethidine
;
Humans
;
Lidocaine
;
Male
;
Mice
;
Mucous Membrane
;
Myography
;
Neuropeptides
;
Norepinephrine
;
Phenylephrine
;
Propranolol
;
Receptors, Adrenergic
;
Receptors, Adrenergic, alpha-1
;
Relaxation
;
Urinary Bladder*
2.Early Intervention with High-Dose Steroid Pulse Therapy Prolongs Disease-Free Interval of Severe Alopecia Areata: A Retrospective Study.
Chao Chun YANG ; Chun Te LEE ; Chao Kai HSU ; Yi Pei LEE ; Tak Wah WONG ; Sheau Chiou CHAO ; Julia Yu Yun LEE ; Hamm Ming SHEU ; Wenchieh CHEN
Annals of Dermatology 2013;25(4):471-474
BACKGROUND: Spontaneous recovery of severe alopecia areata is rare and the condition is difficult to treat. OBJECTIVE: The aim of this study is to investigate and compare the effects and safety of steroid pulse therapy between oral and intravenous administrations between 1999 and 2010 at the Department of Dermatology, National Cheng Kung University Hospital. METHODS: Data were retrospectively retrieved. A satisfactory response was defined as more than 75% hair regrowth in the balding area. RESULTS: A total of 85 patients with more than 50% hair loss were identified and treated, with an overall satisfactory response rate of 51.8%. The mean follow-up time was 37.6 months, with a relapse rate of 22.7%. Patients with alopecia areata (hereafter, AA) of recent onset within one year showed higher response rates (p<0.001) and lower relapse rates compared to patients with AA persisting for more than 1 year. Further, even in patients with alopecia totalis, alopecia universalis or ophiasis type, early treatment resulted in a satisfactory response rate of 47% among the treated patients. In general, oral therapy was as effective and well-tolerated as intravenous therapy. CONCLUSION: The response rate is determined by disease severity and time of intervention, not by the administration form of steroid pulse therapy. Oral steroid pulse therapy can be considered as the first-line treatment for patients with severe AA of recent onset within one year.
Administration, Intravenous
;
Adrenal Cortex Hormones
;
Alopecia Areata*
;
Alopecia*
;
Dermatology
;
Early Intervention (Education)*
;
Follow-Up Studies
;
Hair
;
Humans
;
Pulse Therapy, Drug
;
Recurrence
;
Retrospective Studies*
3.Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo
Ching-Ling LIN ; Ming-Lin TSAI ; Yu-hsin CHEN ; Wei-Ni LIU ; Chun-Yu LIN ; Kai-Wen HSU ; Chien-Yu HUANG ; Yu-Jia CHANG ; Po-Li WEI ; Shu-Huey CHEN ; Li-Chi HUANG ; Chia-Hwa LEE
Biomolecules & Therapeutics 2021;29(5):551-561
Thyroid cancer is the most common endocrine malignancy. Patients with well-differentiated thyroid cancers, such as papillary and follicular cancers, have a favorable prognosis. However, poorly differentiated thyroid cancers, such as medullary, squamous and anaplastic advanced thyroid cancers, are very aggressive and insensitive to radioiodine treatment. Thus, novel therapies that attenuate metastasis are urgently needed. We found that both PDGFC and PDGFRA are predominantly expressed in thyroid cancers and that the survival rate is significantly lower in patients with high PDGFRA expression. This finding indicates the important role of PDGF/PDGFR signaling in thyroid cancer development. Next, we established a SW579 squamous thyroid cancer cell line with 95.6% PDGFRA gene insertion and deletions (indels) through CRISPR/Cas9. Protein and invasion analysis showed a dramatic loss in EMT marker expression and metastatic ability. Furthermore, xenograft tumors derived from PDGFRA geneedited SW579 cells exhibited a minor decrease in tumor growth. However, distant lung metastasis was completely abolished upon PDGFRA gene editing, implying that PDGFRA could be an effective target to inhibit distant metastasis in advanced thyroid cancers. To translate this finding to the clinic, we used the most relevant multikinase inhibitor, imatinib, to inhibit PDGFRA signaling. The results showed that imatinib significantly suppressed cell growth, induced cell cycle arrest and cell death in SW579 cells. Our developed noninvasive apoptosis detection sensor (NIADS) indicated that imatinib induced cell apoptosis through caspase-3 activation. In conclusion, we believe that developing a specific and selective targeted therapy for PDGFRA would effectively suppress PDGFRA-mediated cancer aggressiveness in advanced thyroid cancers.
4.Platelet-Derived Growth Factor Receptor-α Subunit Targeting Suppresses Metastasis in Advanced Thyroid Cancer In Vitro and In Vivo
Ching-Ling LIN ; Ming-Lin TSAI ; Yu-hsin CHEN ; Wei-Ni LIU ; Chun-Yu LIN ; Kai-Wen HSU ; Chien-Yu HUANG ; Yu-Jia CHANG ; Po-Li WEI ; Shu-Huey CHEN ; Li-Chi HUANG ; Chia-Hwa LEE
Biomolecules & Therapeutics 2021;29(5):551-561
Thyroid cancer is the most common endocrine malignancy. Patients with well-differentiated thyroid cancers, such as papillary and follicular cancers, have a favorable prognosis. However, poorly differentiated thyroid cancers, such as medullary, squamous and anaplastic advanced thyroid cancers, are very aggressive and insensitive to radioiodine treatment. Thus, novel therapies that attenuate metastasis are urgently needed. We found that both PDGFC and PDGFRA are predominantly expressed in thyroid cancers and that the survival rate is significantly lower in patients with high PDGFRA expression. This finding indicates the important role of PDGF/PDGFR signaling in thyroid cancer development. Next, we established a SW579 squamous thyroid cancer cell line with 95.6% PDGFRA gene insertion and deletions (indels) through CRISPR/Cas9. Protein and invasion analysis showed a dramatic loss in EMT marker expression and metastatic ability. Furthermore, xenograft tumors derived from PDGFRA geneedited SW579 cells exhibited a minor decrease in tumor growth. However, distant lung metastasis was completely abolished upon PDGFRA gene editing, implying that PDGFRA could be an effective target to inhibit distant metastasis in advanced thyroid cancers. To translate this finding to the clinic, we used the most relevant multikinase inhibitor, imatinib, to inhibit PDGFRA signaling. The results showed that imatinib significantly suppressed cell growth, induced cell cycle arrest and cell death in SW579 cells. Our developed noninvasive apoptosis detection sensor (NIADS) indicated that imatinib induced cell apoptosis through caspase-3 activation. In conclusion, we believe that developing a specific and selective targeted therapy for PDGFRA would effectively suppress PDGFRA-mediated cancer aggressiveness in advanced thyroid cancers.