1.Four-Octyl itaconate ameliorates periodontal destruction via Nrf2-dependent antioxidant system.
Liangjing XIN ; Fuyuan ZHOU ; Chuangwei ZHANG ; Wenjie ZHONG ; Shihan XU ; Xuan JING ; Dong WANG ; Si WANG ; Tao CHEN ; Jinlin SONG
International Journal of Oral Science 2022;14(1):27-27
Periodontitis is a widespread oral disease characterized by continuous inflammation of the periodontal tissue and an irreversible alveolar bone loss, which eventually leads to tooth loss. Four-octyl itaconate (4-OI) is a cell-permeable itaconate derivative and has been recognized as a promising therapeutic target for the treatment of inflammatory diseases. Here, we explored, for the first time, the protective effect of 4-OI on inhibiting periodontal destruction, ameliorating local inflammation, and the underlying mechanism in periodontitis. Here we showed that 4-OI treatment ameliorates inflammation induced by lipopolysaccharide in the periodontal microenvironment. 4-OI can also significantly alleviate inflammation and alveolar bone loss via Nrf2 activation as observed on samples from experimental periodontitis in the C57BL/6 mice. This was further confirmed as silencing Nrf2 blocked the antioxidant effect of 4-OI by downregulating the expression of downstream antioxidant enzymes. Additionally, molecular docking simulation indicated the possible mechanism under Nrf2 activation. Also, in Nrf2-/- mice, 4-OI treatment did not protect against alveolar bone dysfunction due to induced periodontitis, which underlined the importance of the Nrf2 in 4-OI mediated periodontitis treatment. Our results indicated that 4-OI attenuates inflammation and oxidative stress via disassociation of KEAP1-Nrf2 and activation of Nrf2 signaling cascade. Taken together, local administration of 4-OI offers clinical potential to inhibit periodontal destruction, ameliorate local inflammation for more predictable periodontitis.
Alveolar Bone Loss/prevention & control*
;
Animals
;
Antioxidants/pharmacology*
;
Inflammation
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Mice
;
Mice, Inbred C57BL
;
Molecular Docking Simulation
;
NF-E2-Related Factor 2/metabolism*
;
Periodontitis/prevention & control*
;
Succinates
2.Systemic antibiotics increase microbiota pathogenicity and oral bone loss.
Xulei YUAN ; Fuyuan ZHOU ; He WANG ; Xinxin XU ; Shihan XU ; Chuangwei ZHANG ; Yanan ZHANG ; Miao LU ; Yang ZHANG ; Mengjiao ZHOU ; Han LI ; Ximu ZHANG ; Tingwei ZHANG ; Jinlin SONG
International Journal of Oral Science 2023;15(1):4-4
Periodontitis is the most widespread oral disease and is closely related to the oral microbiota. The oral microbiota is adversely affected by some pharmacologic treatments. Systemic antibiotics are widely used for infectious diseases but can lead to gut dysbiosis, causing negative effects on the human body. Whether systemic antibiotic-induced gut dysbiosis can affect the oral microbiota or even periodontitis has not yet been addressed. In this research, mice were exposed to drinking water containing a cocktail of four antibiotics to explore how systemic antibiotics affect microbiota pathogenicity and oral bone loss. The results demonstrated, for the first time, that gut dysbiosis caused by long-term use of antibiotics can disturb the oral microbiota and aggravate periodontitis. Moreover, the expression of cytokines related to Th17 was increased while transcription factors and cytokines related to Treg were decreased in the periodontal tissue. Fecal microbiota transplantation with normal mice feces restored the gut microbiota and barrier, decreased the pathogenicity of the oral microbiota, reversed the Th17/Treg imbalance in periodontal tissue, and alleviated alveolar bone loss. This study highlights the potential adverse effects of long-term systemic antibiotics-induced gut dysbiosis on the oral microbiota and periodontitis. A Th17/Treg imbalance might be related to this relationship. Importantly, these results reveal that the periodontal condition of patients should be assessed regularly when using systemic antibiotics in clinical practice.
Humans
;
Mice
;
Animals
;
Dysbiosis
;
Anti-Bacterial Agents/pharmacology*
;
Virulence
;
Microbiota
;
Periodontitis/chemically induced*
;
Cytokines