1.Effects of Panax notoginseng saponins on liver graft rejection in rats and the mechanisms.
Xianbing ZHANG ; Xun LI ; Ping XIONG ; Chuanchao YI ; Xi CHEN
Journal of Southern Medical University 2019;39(4):394-400
OBJECTIVE:
To investigate the effects of Panax notoginseng saponins (PNS) on the functional status of Kupffer cells (KCs) and immune environment after liver transplantation and explore the possible mechanisms.
METHODS:
KCs were isolated from rats and assessed for phagocytic activity and viability using ink and Trypan blue staining. The cells were exposed to lipopolysaccharide (LPS) alone or in combination with PNS treatment at 0, 10 or 20 μmol/L. The expressions of the inflammatory factors and the oxidative stress products in the cells and the supernatant were assayed with Western blotting and ELISA; the expression of CD206 was detected using immunofluorescence assay, and the expressions of NF-κB and Keap1-Nrf2-ARE pathway proteins were detected using Western blotting. We established an orthotopic liver transplantation (LT) model in rats and assessed the effect of 200 mg/kg PNS on the graft function, inflammatory factors, pathology of the liver tissue, hepatocyte apoptosis and survival time of the rats in comparison with those in rats receiving a sham operation or PBS treatment following LT.
RESULTS:
Treatment with PNS significantly lowered the levels of inflammatory factors and oxidative stress products and increased the levels of interleukin-10 (IL-10) and SOD in a concentration-dependent manner in the KCs ( < 0.05). Immunofluorescence assay showed that PNS treatment obviously increased the expression of CD206 in the KCs. PNS treatment also significantly reduced the expressions of IRAK4, p-IKK, p-IκB, p-p65 and Keap1 proteins and increased the expression levels of Nrf2 and ARE proteins in the KCs ( < 0.05). In the rat models of LT, PNS treatment significantly improved the liver graft function, lowered the expression of the pro-inflammatory factors, and reduced hepatocyte apoptosis as compared with PBS treatment. PNS treatment obviously alleviated pathological changes in the liver graft and significantly prolonged the survival time of the rats following LT ( < 0.05). In addition, injection of GdCl to block KC function resulted in severe acute graft rejection in the rats regardless of PNS treatment ( > 0.05).
CONCLUSIONS
PNS can reduce inflammatory response and oxidative stress in activated KCs by inhibiting NF-κB and Keap1-Nrf2-ARE pathways and promote the polarization of KCs into M2 phenotype to prolong the survival time of rats after LT.
Animals
;
Graft Rejection
;
Kelch-Like ECH-Associated Protein 1
;
Liver
;
Liver Transplantation
;
NF-E2-Related Factor 2
;
Panax notoginseng
;
Rats
;
Saponins
2.Identification of Key Genes for the Ultrahigh Yield of Rice Using Dynamic Cross-tissue Network Analysis
Hu JIHONG ; Zeng TAO ; Xia QIONGMEI ; Huang LIYU ; Zhang YESHENG ; Zhang CHUANCHAO ; Zeng YAN ; Liu HUI ; Zhang SHILAI ; Huang GUANGFU ; Wan WENTING ; Ding YI ; Hu FENGYI ; Yang CONGDANG ; Chen LUONAN ; Wang WEN
Genomics, Proteomics & Bioinformatics 2020;18(3):256-270
Significantly increasing crop yield is a major and worldwide challenge for food supply and security. It is well-known that rice cultivated at Taoyuan in Yunnan of China can produce the highest yield worldwide. Yet, the gene regulatory mechanism underpinning this ultrahigh yield has been a mystery. Here, we systematically collected the transcriptome data for seven key tissues at different developmental stages using rice cultivated both at Taoyuan as the case group and at another regular rice planting place Jinghong as the control group. We identified the top 24 candi-date high-yield genes with their network modules from these well-designed datasets by developing a novel computational systems biology method, i.e., dynamic cross-tissue (DCT) network analysis. We used one of the candidate genes, OsSPL4, whose function was previously unknown, for gene editing experimental validation of the high yield, and confirmed that OsSPL4 significantly affects panicle branching and increases the rice yield. This study, which included extensive field phenotyping, cross-tissue systems biology analyses, and functional validation, uncovered the key genes and gene regulatory networks underpinning the ultrahigh yield of rice. The DCT method could be applied to other plant or animal systems if different phenotypes under various environments with the common genome sequences of the examined sample. DCT can be downloaded from https://github.com/zt-pub/DCT.