3.Loss of heterozygosity on chromosome loci 2, 3, 5, 11, 17, and 18 in aberrant crypt foci of human colon.
Ping YUAN ; Menghong SUN ; Jinsheng ZHANG ; Taiming ZHANG ; Xiongzeng ZHU ; Daren SHI
Chinese Journal of Pathology 2002;31(6):485-490
OBJECTIVETo study the genetic basis of aberrant crypt foci (ACF), which serve as a very early morphological alteration during the development of carcinogenesis by analyzing the loss of heterozygosity (LOH).
METHODSDNA from 35 colorectal carcinomas (CRC) and 34 matched ACF were isolated by microdissection. LOH of microsatellite loci at 18q12, 18q21, 5q12, 5q21, 3p21, 2p16, 17q21, 17q11 and 11p13 was detected by means of ABI-SEQUENCER and GeneScan software was applied for analysis.
RESULTSThe rate of LOH in ACF (41.18%) was less than that in carcinoma (68.57%) (P < 0.05). The profile of LOH rates at loci 18q12, 5q12, 3p21, 17q21, 17q11, 11p13 and 2p16 in ACF was similar to that in carcinoma. The LOH frequencies on 18q12, 18q21, 5q12, 5q21, and 3p21 were higher than that on 17q11 and 11p13. However the rate at 18q21 and 5q21 in ACF was much lower than that in the carcinoma (P < 0.05). The co-existing carcinomas displayed more polypoid growth pattern and located more at the sigmoid colon and rectum. LOH in carcinomas did not correlate with the location, size, type of the carcinoma and Duke's stage.
CONCLUSIONSACF are putative preneoplastic lesions that might represent the earliest morphological lesion with the alteration at molecular genetic level. Our study provides further genetic evidence in the pathogenesis of colorectal carcinomas.
Chromosomes ; Chromosomes, Human, Pair 11 ; Chromosomes, Human, Pair 17 ; Chromosomes, Human, Pair 18 ; Chromosomes, Human, Pair 2 ; Chromosomes, Human, Pair 3 ; Chromosomes, Human, Pair 5 ; Colorectal Neoplasms ; genetics ; pathology ; Humans ; Loss of Heterozygosity ; Precancerous Conditions
4.Molecular genetics in chronic myeloid leukemia with variant Ph translocation.
Wei WU ; Jian-yong LI ; Yu ZHU ; Hai-rong QIU ; Jin-lan PAN ; Wei XU ; Li-juan CHEN ; Yun-feng SHEN ; Yong-quan XUE
Chinese Journal of Medical Genetics 2007;24(4):470-473
OBJECTIVETo explore the value of fluorescence in situ hybridization (FISH) and multiplex fluorescence in situ hybridization (M-FISH) techniques in the detection of genetic changes in chronic myeloid leukemia (CML) with variant Philadelphia translocation (vPh).
METHODSCytogenetic preparations from 10 CML patients with vPh confirmed by R banding were assayed with dual color dual fusion FISH technique. If only one fusion signal was detected in interphase cells, metaphase cells were observed to determine if there were derivative chromosome 9[der (9)] deletions. Meanwhile, the same cytogenetic preparations were assayed with M-FISH technique.
RESULTSOf the 10 CML patients with vPh, 5 were detected with der (9) deletions by FISH technique. M-FISH technique revealed that besides the chromosome 22, chromosomes 1, 3, 5, 6, 8, 10, 11 and 17 were also involved in the vPh. M-FISH technique also detected the abnormalities which were not found with conventional cytogenetics (CC), including two never reported abnormalities.
CONCLUSIONThe combination of CC, FISH and M-FISH technique could refine the genetic diagnosis of CML with vPh.
Adult ; Aged ; Chromosomes, Human, Pair 1 ; genetics ; Chromosomes, Human, Pair 10 ; genetics ; Chromosomes, Human, Pair 11 ; genetics ; Chromosomes, Human, Pair 17 ; genetics ; Chromosomes, Human, Pair 22 ; genetics ; Chromosomes, Human, Pair 3 ; genetics ; Chromosomes, Human, Pair 5 ; genetics ; Chromosomes, Human, Pair 6 ; genetics ; Chromosomes, Human, Pair 8 ; genetics ; Female ; Humans ; In Situ Hybridization, Fluorescence ; methods ; Karyotyping ; Leukemia, Myelogenous, Chronic, BCR-ABL Positive ; diagnosis ; genetics ; Male ; Middle Aged ; Reproducibility of Results ; Sensitivity and Specificity ; Translocation, Genetic ; genetics ; Young Adult
5.Genome-wide genetic study of medulloblastoma using allelotype analysis.
Xiao-lu YIN ; Chung-Sean PANG ; Ho-Keung NG
Chinese Journal of Pathology 2004;33(5):413-415
OBJECTIVETo investigate global genetic alterations in medulloblastoma, and to localize critical chromosomal loci with allelic imbalances associated with the development of medulloblastoma.
METHODSA high-resolution genome-wide allelotype analysis, including 384 microsatellite markers, was performed in 12 medulloblastomas.
RESULTSAn average of 238 (62.3%) allelic imbalances were detected on all 39 autosomal arms. Non-random allelic gains or losses were detected on chromosomes 7q (58.3%), 8p (66.7%), 16q (58.3%), 17p (58.3%) and 17q (66.7%). In addition, chromosomal arms with frequencies of allelic imbalances higher than the mean percentage were identified on 3p (33.3%), 3q (33.3%), 4q (41.7%), 7p (33.3%), 8q (41.7%), 10q (41.7%), 13q (33.3%), 14q (33.3%) and 20q (33.3%). No relationship was found between the frequency of allelic imbalances and the clinical outcome of the patients.
CONCLUSIONSA global view of the genetic alterations in medulloblastoma was provided. The allelic imbalances involving chromosomes 7q, 8p, 16q, 17p and 17q may play an important role in the pathogenesis of medulloblastoma.
Adolescent ; Adult ; Alleles ; Allelic Imbalance ; Cerebellar Neoplasms ; genetics ; Child ; Child, Preschool ; Chromosomes, Human, Pair 16 ; Chromosomes, Human, Pair 17 ; Chromosomes, Human, Pair 7 ; Chromosomes, Human, Pair 8 ; Female ; Genotype ; Humans ; Male ; Medulloblastoma ; genetics ; Microsatellite Repeats ; genetics
6.Recurrent isochromosome 21 and multiple abnormalities in a patient suspected of having acute myeloid leukemia with eosinophilic differentiation -- a rare case from South India.
Sangeetha VIJAY ; Santhi SAROJAM ; Sureshkumar RAVEENDRAN ; Vani SYAMALA ; Sreeja LEELAKUMARI ; Geetha NARAYANAN ; Sreedharan HARIHARAN
Chinese Journal of Cancer 2012;31(1):45-50
Acute myeloid leukemia (AML) is a phenotypically heterogeneous disorder. The M4 subtype of AML is frequently associated with the cytogenetic marker inversion 16 and/or the presence of eosinophilia. Blast crisis is the aggressive phase of the triphasic chronic myeloid leukemia (CML), which is a disease with Philadelphia(Ph) chromosome as the major abnormality. In the present study, we report a 76-year-old patient suspected of having AML with eosinophilic differentiation (AML-M4), which in clinical tests resembles CML blast crisis with multiple chromosomal abnormalities. Isochromosome 21 [i(21)(q10)] was the most recurrent feature noted in metaphases with 46 chromosomes. Ring chromosome, tetraploid endoreduplication, recurrent aneuploid clones with loss of X chromosome, monosomy 17, monosomy 7, and structural variation translocation (9;14) were also observed in this patient. Fluorescent in situ hybridization (FISH) confirmed the absence of Ph chromosome. This report shows how cytogenetic analyses revealed atypical structural aberrations in the M4 subtype of AML.
Aged
;
Blast Crisis
;
genetics
;
Chromosome Aberrations
;
Chromosome Deletion
;
Chromosomes, Human, Pair 14
;
genetics
;
Chromosomes, Human, Pair 17
;
genetics
;
Chromosomes, Human, Pair 21
;
genetics
;
Chromosomes, Human, Pair 7
;
genetics
;
Chromosomes, Human, Pair 9
;
genetics
;
Chromosomes, Human, X
;
genetics
;
Cytogenetic Analysis
;
Endoreduplication
;
Humans
;
In Situ Hybridization, Fluorescence
;
Isochromosomes
;
Leukemia, Myelomonocytic, Acute
;
genetics
;
pathology
;
Male
;
Philadelphia Chromosome
;
Polyploidy
;
Ring Chromosomes
;
Translocation, Genetic
7.Application of fluorescence in-situ hybridization technique in multiple myeloma.
Ying ZHAO ; Dong ZHENG ; Juan LI ; Wo-Tang ZHU
Journal of Zhejiang University. Medical sciences 2009;38(5):459-464
OBJECTIVETo investigate the common chromosome abnormalities of the patients with multiple myeloma in China and the relationships of cytogenetic abnormalities and clinical features.
METHODSIn interphase fluorescence in-situ hybridization (FISH) analysis, a panel of probes including D13S319 (13q14.3), RB1(RB1 gene), IgH (14q32), P53(17p13), 1q21(1q21 gene) was used to study the cytogenetic abnormalities of 31 patients with multiple myeloma; and the clinical implications of cytogenetic abnormalities were investigated.
RESULTThe frequencies of the partial deletion of chromosome 13, translocation involving the 14q32 region, abnormalities in 1q21 and deletion of 17p13 were 45%, 68%, 50%, and 35% in the study, respectively. The abnormalities of both the partial deletion of chromosome 13 and translocation involving the 14q32 region were found in 35% of the patients. 79% of the patients with del (13q) had 14q32 translocations simultaneously. All the patients with positive detection of probe D13S319 were found to have translocation of 14q32 at the same time. There were correlations between the partial deletion of chromosome 13 and translocation involving the 14q32 region. The overall response rate of induction treatment was 67.7%. No significant difference was found in patients with positive or negative cytogenetic abnormalities of del(13q), 14q32 translocation, del(17p13), and 1q21 abnormalities.
CONCLUSION13q deletion, IgH rearrangement, chromosome 1 abnormality and 17p13 deletion are the common cytogenetic abnormalities of MM patients in China. There is a significant correlation between the presence of 14q32 translocations and chromosome 13 deletion in MM patients.
Adult ; Aged ; Chromosome Deletion ; Chromosomes, Human, Pair 1 ; Chromosomes, Human, Pair 13 ; Chromosomes, Human, Pair 14 ; Chromosomes, Human, Pair 17 ; Female ; Humans ; In Situ Hybridization, Fluorescence ; Male ; Middle Aged ; Multiple Myeloma ; genetics ; Translocation, Genetic
8.Molecular genetics of dermatofibrosarcoma protuberans: an update.
Chinese Journal of Pathology 2006;35(1):44-47
Biomarkers, Tumor
;
Chromosomes, Human, Pair 17
;
Chromosomes, Human, Pair 22
;
Chromosomes, Human, Pair 5
;
Dermatofibrosarcoma
;
genetics
;
metabolism
;
Humans
;
Oligonucleotide Array Sequence Analysis
;
Oncogene Proteins, Fusion
;
biosynthesis
;
genetics
;
RNA, Messenger
;
biosynthesis
;
genetics
;
Ring Chromosomes
;
Skin Neoplasms
;
genetics
;
metabolism
;
Translocation, Genetic
;
Trisomy
9.Study on significance of multitargeted fluorescence in situ hybridization for urothelial carcinoma.
Li XIAO ; Yu-lei YIN ; Xiong-zeng ZHU ; Yan CHEN ; Chen LU ; Bo YU
Chinese Journal of Pathology 2013;42(7):465-466
Carcinoma in Situ
;
genetics
;
Carcinoma, Transitional Cell
;
genetics
;
Chromosome Aberrations
;
Chromosomes, Human, Pair 17
;
genetics
;
Chromosomes, Human, Pair 3
;
genetics
;
Chromosomes, Human, Pair 7
;
genetics
;
Humans
;
In Situ Hybridization, Fluorescence
;
Urinary Bladder Neoplasms
;
genetics
10.Analysis of variant translocation der ins (17; 15) in patient with APL by G-banding technique and interphase fluorescence in situ hybridization.
Tong WANG ; Jing-Ying QIU ; Chun-Fu YU ; Xiao-Lan MA ; Xiao-Peng JIA ; Yan-Ping WANG ; Hong-Xing LIU ; Yue-Hui LIN ; Chun-Rong TONG ; Dao-Pei LU
Journal of Experimental Hematology 2009;17(3):537-540
To investigate the biological characteristics of the variant translocation der ins (17;15) in a patient with acute promyelocytic leukemia (APL), the conventional G-banding technique, interphase fluorescence in situ hybridization (int-FISH), RT-PCR, gene scanning, gene sequence and flow cytometry were performed. The results indicated that the variant translocation der ins (17, 15) observed by G banding technique was a rare type, the int-FISH assay by using dual-color pml/raralpha fusion probes confirmed the cytogenetic findings. The detection results of other molecular methods demonstrated the existence of the whole pml/raralpha fusion gene, while this case had insertion variant translocation. This patient got complete remission by using combined chemotherapy, and survives with continuous complete remission during following up for 1 year. In conclusion, the variant translocation der ins (17; 15) is rare type in APL, its incidence is lower, several signal types in detection of int-FISH were observed and the combination chemotherapy for this patient showed more obvious efficacy.
Chromosome Banding
;
Chromosomes, Human, Pair 15
;
Chromosomes, Human, Pair 17
;
Humans
;
In Situ Hybridization, Fluorescence
;
methods
;
Interphase
;
genetics
;
Leukemia, Promyelocytic, Acute
;
genetics
;
Male
;
Translocation, Genetic
;
Young Adult