1.Development of a monoclonal antibody-based co-agglutination test to detect enterotoxigenic Escherichia coli isolated from diarrheic neonatal calves.
Brajesh C VARSHNEY ; N M PONNANNA ; Pranati A SARKAR ; Pragna REHMAN ; Jigar H SHAH
Journal of Veterinary Science 2007;8(1):57-64
Escherichia coli (E. coli) strains were collected from young diarrheic calves in farms and field. Strains that expressed the K99 (F5) antigen were identified by agglutination tests using reference antibodies to K99 antigen and electron microscopy. The K99 antigen from a selected field strain (SAR-14) was heat-extracted and fractionated on a Sepharose CL-4B column. Further purification was carried out by sodium deoxycholate treatment and/or ion-exchange chromatography. Monoclonal antibodies to purified K99 antigen were produced by the hybridoma technique, and a specific clone, NEK99-5.6.12, was selected for propagation in tissue culture. The antibodies, thus obtained, were affinity-purified, characterized and coated onto Giemsastained Cowan-I strain of Staphylococcus aureus (S. aureus). The antibody-coated S. aureus were used in a coagglutination test to detect K99+ E. coli isolated from feces of diarrheic calves. The specificity of the test was validated against reference monoclonal antibodies used in co-agglutination tests, as well as in ELISA. Specificity of the monoclonal antibodies was also tested against various Gram negative bacteria. The developed antibodies specifically detected purified K99 antigen in immunoblots, as well as K99+ E. coli in ELISA and co-agglutination tests. The co-agglutination test was specific and convenient for large-scale screening of K99+ E. coli isolates.
Agglutination Tests/methods/*veterinary
;
Animals
;
*Animals, Newborn
;
Antibodies, Monoclonal/*immunology
;
Antigens, Surface/immunology/isolation & purification
;
Bacterial Toxins/immunology/isolation & purification
;
Cattle
;
Cattle Diseases/*immunology/*microbiology
;
Chromatography, Gel/veterinary
;
Chromatography, Ion Exchange/veterinary
;
Chromatography, Liquid/veterinary
;
Diarrhea/immunology/*veterinary
;
Electrophoresis, Polyacrylamide Gel/veterinary
;
Enzyme-Linked Immunosorbent Assay/veterinary
;
Escherichia coli/*immunology
;
Escherichia coli Infections/immunology/*veterinary
;
Immunoblotting/veterinary
;
Staphylococcus aureus
2.Development of high-performance liquid chromatography methods for the anticoccidials: toltrazuril and diclazuril.
Kyung Hun JEONG ; Miyoung JEONG ; Hae Chul PARK ; Md Akil HOSSAIN ; Daegyun KIM ; Kwang Jick LEE ; Jeong Woo KANG
Korean Journal of Veterinary Research 2017;57(4):223-226
This study was undertaken to develop new analytical methods for assessment of anticoccidials. High-performance liquid chromatography (HPLC) was found to be a fast, reliable, and practical method. The anticoccidials used in this experiment were toltrazuril and diclazuril, and the analysis factors were specificity, linearity, accuracy, repeatability, and intermediate precision. The linearity of each anticoccidial was better than 0.99, and the accuracies were 99.5% and 99.1% with relative SD of 0.5 and 0.4, respectively. To assess whether the developed HPLC method could be effectively applied, toltrazuril and diclazuril post-market veterinary products (five products) that are currently sold were tested. The results revealed no non-compliant items and the method was applied successfully. Therefore, the newly developed HPLC method for anticoccidial assessment described in this study may be useful as a reference method in the Korean Standards of Veterinary Pharmaceuticals for the analysis of toltrazuril and diclazuril.
Chromatography, High Pressure Liquid
;
Chromatography, Liquid*
;
Coccidiostats
;
Methods*
;
Sensitivity and Specificity
;
Veterinary Drugs
3.Sporozoite proteome analysis of Cryptosporidium parvum by one-dimensional SDS-PAGE and liquid chromatography tandem mass spectrometry.
Journal of Veterinary Science 2013;14(2):107-114
Despite the development of new technologies, new challenges still remain for large scale proteomic profiling when dealing with complex biological mixtures. Fractionation prior to liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis is usually the preferred method to reduce the complexity of any biological sample. In this study, a gel LC-MS/MS approach was used to explore the stage specific proteome of Cryptosporidium (C.) parvum. To accomplish this, the sporozoite protein of C. parvum was first fractionated using SDS-PAGE with subsequent LC-MS/MS analysis. A total of 135 protein hits were recorded from 20 gel slices (from same gel lane), with many hits occurring in more than one band. Excluding all non-Cryptosporidium entries and proteins with multiple hits, 33 separate C. parvum entries were identified during the study. The overall goal of this study was to reduce sample complexity by protein fractionation and increase the possibility of detecting proteins present in lower abundance in a complex protein mixture.
Chemical Fractionation/methods
;
Chromatography, Liquid/methods/veterinary
;
Cryptosporidium parvum/*chemistry/growth & development/metabolism
;
Electrophoresis, Polyacrylamide Gel/methods/veterinary
;
Gene Expression Profiling/*methods/veterinary
;
Proteome/analysis
;
Proteomics/*methods
;
Protozoan Proteins/*analysis
;
Sporozoites/chemistry/metabolism
;
Tandem Mass Spectrometry/methods/veterinary
4.Autoantibodies against thyroid hormones and their influence on thyroxine determination with chemiluminescence immunoassay in dogs.
Marion PIECHOTTA ; Michael ARNDT ; Hans Otto HOPPEN
Journal of Veterinary Science 2010;11(3):191-196
Autoantibodies against thyroxin (T4AA) and triiodothyronine (T3AA) are present in dogs with autoimmune thyroiditis and have been reported to interfere with immunoassays. The objectives of this study were to determine the frequency of autoantibodies and to determine whether interference occurs by T4AA, using a non-immunological method (high performance liquid chromatography, HPLC) for thyroxin (T4) measurement. Based on clinical symptoms, T4 and thyroid stimulating hormone (TSH) concentration, 1,339 dogs were divided into six groups: Group 1: hypothyroid (n = 149); Group 2: subclinical thyroiditis (n = 110); Group 3: suspicious for non thyroidal illness (n = 691); Group 4: biochemical euthyroid (n = 138); Group 5: hypothyroid dogs under substitution therapy (n = 141); Group 6: healthy dogs (n = 110). The incidence of T4AA and T3AA, determined using radiometric assay, was low (0.5% and 3.8%) and higher in hypothyroid dogs compared to dogs suspicious for hypothyroidism (Group 2-4) (p<0.05). T4AA was not detected in dogs with normal T4 and elevated TSH. T4 concentrations of T4AA positive samples determined using HPLC were comparable to results obtained by chemiluminescence immunoassay. These findings indicate that the probability of interference of T4AA leading to falsely elevated T4 concentration in the T4 assay seems to be low.
Animals
;
Autoantibodies/*immunology
;
Chemiluminescent Measurements/methods/*veterinary
;
Chromatography, High Pressure Liquid/veterinary
;
Dog Diseases/*diagnosis/*immunology
;
Dogs
;
Immunoassay/methods/*veterinary
;
Thyroid Hormones/*immunology
;
Thyroiditis, Autoimmune/diagnosis/immunology/*veterinary
;
Thyroxine/*blood
5.Development of immunoassays for the detection of kanamycin in veterinary fields.
Yong JIN ; Jin Wook JANG ; Chang Hoon HAN ; Mun Han LEE
Journal of Veterinary Science 2006;7(2):111-117
Monoclonal antibody against kanamycin was prepared, and competitive direct ELISA and immunochromatographic assay were developed using the antibody to detect kanamycin in animal plasma and milk. The monoclonal antibody produced was identified to be IgG1, which has a kappa light chain. No cross-reactivity of the antibody was detected with other aminoglycosides, indicating that the monoclonal antibody was highly specific for kanamycin. Based on competitive direct ELISA, the detection limits of kanamycin were determined to be 1.1 ng/ml in PBS, 1.4 ng/ml in plasma, and 1.0 ng/ml in milk. The concentration of intramuscularly injected kanamycin was successfully monitored in rabbit plasma with competitive direct ELISA. Based on the colloidal gold-based immunochromatographic assay, the detection limits of kanamycin were estimated to be about 6-8 ng/ml in PBS, plasma, and milk. The immunochromatographic assay would be suitable for rapid and simple screening of kanamycin residues in veterinary medicine. Screened positives can be confirmed using a more sensitive laboratory method such as competitive direct ELISA. Therefore, the assays developed in this study could be used to complement each other as well as other laboratory findings. Moreover, instead of slaughtering the animals to obtain test samples, these methods could be applied to determine kanamycin concentration in the plasma of live animals.
Animals
;
Anti-Bacterial Agents/*analysis
;
Antibodies, Monoclonal
;
Chromatography/methods/veterinary
;
Enzyme-Linked Immunosorbent Assay/methods/*veterinary
;
Kanamycin/*analysis
;
Mice
;
Milk/*chemistry
;
Rabbits
6.Simultaneous Determination of Various Macrolides by Liquid Chromatography/Mass Spectrometry.
Youn Hwan HWANG ; Jong Hwan LIM ; Byung Kwon PARK ; Hyo In YUN
Journal of Veterinary Science 2002;3(2):103-108
Macrolides are frequently used in veterinary medicine as therapeutic and preventive agents for various diseases. It is difficult to determine macrolides simultaneously with conventional methods due to their similar structures. A simultaneous analysis for erythromycin, roxithromycin, tiamulin and tylosin with LC/MS has been developed. Separation was performed on C18 reversed phase column. Mobile phase was gradiently flowed with 10 mM ammonium acetate and methanol. The mass spectrometer was run in the positive mode and selective ion monitoring mode. The molecular ions were [M+H]+ form at m/z 837.5 for erythromycin, at m/z 859.5 for roxithromycin, at m/z 494.2 for tiamulin and at m/z 916.7 for tylosin. Limits of detection were in the range from 0.001 to 0.01 microgram/g lower than their MRLs.
Anti-Bacterial Agents/*analysis
;
Chromatography, Liquid/*methods
;
Diterpenes/*analysis
;
Erythromycin/*analysis
;
Mass Spectrometry/*methods
;
Molecular Structure
;
Roxithromycin/*analysis
;
Sensitivity and Specificity
;
Tylosin/*analysis
;
Veterinary Medicine
7.Quantitation of meloxicam in the plasma of koalas (Phascolarctos cinereus) by improved high performance liquid chromatography.
Benjamin KIMBLE ; Kong Ming LI ; Merran GOVENDIR
Journal of Veterinary Science 2013;14(1):7-14
An improved method to determine meloxicam (MEL) concentrations in koala plasma using reversed phase high performance liquid chromatography equipped with a photo diode array detector was developed and validated. A plasma sample clean-up step was carried out with hydrophilic-lipophilic copolymer solid phase extraction cartridges. MEL was separated from an endogenous interference using an isocratic mobile phase [acetonitrile and 50 mM potassium phosphate buffer (pH 2.15), 45:55 (v:v)] on a Nova-Pak C18 4-microm (300 x 3.9 mm) column. Retention times for MEL and piroxicam were 8.03 and 5.56 min, respectively. Peak area ratios of MEL to the internal standard (IS) were used for regression analysis of the calibration curve, which was linear from 10 to 1,000 ng/mL (r2 > 0.9998). Average absolute recovery rates were 91% and 96% for MEL and the IS, respectively. This method had sufficient sensitivity (lower quantitation limit of 10 ng/mL), precision, accuracy, and selectivity for routine analysis of MEL in koala plasma using 250-microL sample volumes. Our technique clearly resolved the MEL peak from the complex koala plasma matrix and accurately measured MEL concentrations in small plasma volumes.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/*blood
;
Chromatography, High Pressure Liquid/methods/*veterinary
;
Molecular Structure
;
Phascolarctidae/*blood
;
Piroxicam/chemistry
;
Quality Control
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Thiazines/*blood
;
Thiazoles/*blood
8.Quantitation of meloxicam in the plasma of koalas (Phascolarctos cinereus) by improved high performance liquid chromatography.
Benjamin KIMBLE ; Kong Ming LI ; Merran GOVENDIR
Journal of Veterinary Science 2013;14(1):7-14
An improved method to determine meloxicam (MEL) concentrations in koala plasma using reversed phase high performance liquid chromatography equipped with a photo diode array detector was developed and validated. A plasma sample clean-up step was carried out with hydrophilic-lipophilic copolymer solid phase extraction cartridges. MEL was separated from an endogenous interference using an isocratic mobile phase [acetonitrile and 50 mM potassium phosphate buffer (pH 2.15), 45:55 (v:v)] on a Nova-Pak C18 4-microm (300 x 3.9 mm) column. Retention times for MEL and piroxicam were 8.03 and 5.56 min, respectively. Peak area ratios of MEL to the internal standard (IS) were used for regression analysis of the calibration curve, which was linear from 10 to 1,000 ng/mL (r2 > 0.9998). Average absolute recovery rates were 91% and 96% for MEL and the IS, respectively. This method had sufficient sensitivity (lower quantitation limit of 10 ng/mL), precision, accuracy, and selectivity for routine analysis of MEL in koala plasma using 250-microL sample volumes. Our technique clearly resolved the MEL peak from the complex koala plasma matrix and accurately measured MEL concentrations in small plasma volumes.
Animals
;
Anti-Inflammatory Agents, Non-Steroidal/*blood
;
Chromatography, High Pressure Liquid/methods/*veterinary
;
Molecular Structure
;
Phascolarctidae/*blood
;
Piroxicam/chemistry
;
Quality Control
;
Reproducibility of Results
;
Sensitivity and Specificity
;
Thiazines/*blood
;
Thiazoles/*blood
9.Development and Clinical Evaluation of a Rapid Serodiagnostic Test for Toxoplasmosis of Cats Using Recombinant SAG1 Antigen.
Chom Kyu CHONG ; Wooseog JEONG ; Hak Yong KIM ; Dong Jun AN ; Hye Young JEOUNG ; Jeong Eun RYU ; A Ra KO ; Yong Joo KIM ; Sung Jong HONG ; Zhaoshou YANG ; Ho Woo NAM
The Korean Journal of Parasitology 2011;49(3):207-212
Rapid serodiagnostic methods for Toxoplasma gondii infection in cats are urgently needed for effective control of transmission routes toward human infections. In this work, 4 recombinant T. gondii antigens (SAG1, SAG2, GRA3, and GRA6) were produced and tested for the development of rapid diagnostic test (RDT). The proteins were expressed in Escherichia coli, affinity-purified, and applied onto the nitrocellulose membrane of the test strip. The recombinant SAG1 (rSAG1) showed the strongest antigenic activity and highest specificity among them. We also performed clinical evaluation of the rSAG1-loaded RDT in 182 cat sera (55 household and 127 stray cats). The kit showed 0.88 of kappa value comparing with a commercialized ELISA kit, which indicated a significant correlation between rSAG1-loaded RDT and the ELISA kit. The overall sensitivity and specificity of the RDT were 100% (23/23) and 99.4% (158/159), respectively. The rSAG1-loaded RDT is rapid, easy to use, and highly accurate. Thus, it would be a suitable diagnostic tool for rapid detection of antibodies in T. gondii-infected cats under field conditions.
Animals
;
Antigens, Protozoan/*diagnostic use/genetics
;
Cat Diseases/*diagnosis
;
Cats
;
Chromatography, Affinity
;
Escherichia coli/genetics
;
*Point-of-Care Systems
;
Protozoan Proteins/*diagnostic use/genetics
;
Recombinant Proteins/diagnostic use/genetics
;
Sensitivity and Specificity
;
Serologic Tests/methods
;
Toxoplasma/genetics
;
Toxoplasmosis, Animal/*diagnosis
;
Veterinary Medicine/*methods