2.Melanization in living organisms: a perspective of species evolution.
Christopher J VAVRICKA ; Bruce M CHRISTENSEN ; Jianyong LI
Protein & Cell 2010;1(9):830-841
Eumelanin is a heteropolymer that is generally composed of hydroxylated indole residues and plays diverse protective functions in various species. Melanin is derived from the amino acid tyrosine and production of melanin is a highly complex oxidative process with a number of steps that can either proceed enzymatically or non-enzymatically. Although melanin plays important protective roles in many species, during melanization, particularly in steps that can proceed non-enzymatically, many toxic intermediates are produced, including semiquinones, dopaquinone, indole-quinones and moreover, the production of many reactive oxygen species. To mitigate the production of reactive species, a number of proteins that regulate the biochemical process of melanization have evolved in various living species, which is closely related to adaptation and physiological requirements. In this communication, we discuss differences between non-enzymatic and enzymatic processes of melanization and the enzymatic regulation of melanization in difference species with an emphasis on differences between mammals and insects. Comparison between melanization and insect sclerotization is also emphasized which raises some interesting questions about the current models of these pathways.
Animals
;
Biological Evolution
;
Humans
;
Insecta
;
metabolism
;
Mammals
;
metabolism
;
Melanins
;
biosynthesis
;
chemistry
;
Models, Biological
;
Species Specificity
3.Tyrosine aminotransferase: biochemical and structural properties and molecular dynamics simulations.
Prajwalini MEHERE ; Qian HAN ; Justin A LEMKUL ; Christopher J VAVRICKA ; Howard ROBINSON ; David R BEVAN ; Jianyong LI
Protein & Cell 2010;1(11):1023-1032
Tyrosine aminotransferase (TAT) catalyzes the transamination of tyrosine and other aromatic amino acids. The enzyme is thought to play a role in tyrosinemia type II, hepatitis and hepatic carcinoma recovery. The objective of this study is to investigate its biochemical and structural characteristics and substrate specificity in order to provide insight regarding its involvement in these diseases. Mouse TAT (mTAT) was cloned from a mouse cDNA library, and its recombinant protein was produced using Escherichia coli cells and purified using various chromatographic techniques. The recombinant mTAT is able to catalyze the transamination of tyrosine using α-ketoglutaric acid as an amino group acceptor at neutral pH. The enzyme also can use glutamate and phenylalanine as amino group donors and p-hydroxy-phenylpyruvate, phenylpyruvate and alpha-ketocaproic acid as amino group acceptors. Through macromolecular crystallography we have determined the mTAT crystal structure at 2.9 Å resolution. The crystal structure revealed the interaction between the pyridoxal-5'-phosphate cofactor and the enzyme, as well as the formation of a disulphide bond. The detection of disulphide bond provides some rational explanation regarding previously observed TAT inactivation under oxidative conditions and reactivation of the inactive TAT in the presence of a reducing agent. Molecular dynamics simulations using the crystal structures of Trypanosoma cruzi TAT and human TAT provided further insight regarding the substrate-enzyme interactions and substrate specificity. The biochemical and structural properties of TAT and the binding of its cofactor and the substrate may help in elucidation of the mechanism of TAT inhibition and activation.
Animals
;
Catalytic Domain
;
Crystallography, X-Ray
;
Humans
;
Mice
;
Molecular Dynamics Simulation
;
Tyrosine Transaminase
;
chemistry
5.Crystal structure of the swine-origin A (H1N1)-2009 influenza A virus hemagglutinin (HA) reveals similar antigenicity to that of the 1918 pandemic virus.
Wei ZHANG ; Jianxun QI ; Yi SHI ; Qing LI ; Feng GAO ; Yeping SUN ; Xishan LU ; Qiong LU ; Christopher J VAVRICKA ; Di LIU ; Jinghua YAN ; George F GAO
Protein & Cell 2010;1(5):459-467
Influenza virus is the causative agent of the seasonal and occasional pandemic flu. The current H1N1 influenza pandemic, announced by the WHO in June 2009, is highly contagious and responsible for global economic losses and fatalities. Although the H1N1 gene segments have three origins in terms of host species, the virus has been named swine-origin influenza virus (S-OIV) due to a predominant swine origin. 2009 S-OIV has been shown to highly resemble the 1918 pandemic virus in many aspects. Hemagglutinin is responsible for the host range and receptor binding of the virus and is therefore a primary indicator for the potential of infection. Primary sequence analysis of the 2009 S-OIV hemagglutinin (HA) reveals its closest relationship to that of the 1918 pandemic influenza virus, however, analysis at the structural level is necessary to critically assess the functional significance. In this report, we report the crystal structure of soluble hemagglutinin H1 (09H1) at 2.9 Å, illustrating that the 09H1 is very similar to the 1918 pandemic HA (18H1) in overall structure and the structural modules, including the five defined antiboby (Ab)-binding epitopes. Our results provide an explanation as to why sera from the survivors of the 1918 pandemics can neutralize the 2009 S-OIV, and people born around the 1918 are resistant to the current pandemic, yet younger generations are more susceptible to the 2009 pandemic.
Animals
;
Cloning, Molecular
;
Crystallography, X-Ray
;
Hemagglutinin Glycoproteins, Influenza Virus
;
chemistry
;
genetics
;
immunology
;
isolation & purification
;
Influenza A Virus, H1N1 Subtype
;
chemistry
;
genetics
;
immunology
;
Models, Molecular
;
Protein Conformation
;
Swine
;
virology