1.Tissue integration of zirconia and titanium implants with and without buccal dehiscence defects
Hyun Chang LIM ; Ronald Ernst JUNG ; Christoph Hans Franz HÄMMERLE ; Myong Ji KIM ; Kyeong Won PAENG ; Ui Won JUNG ; Daniel Stefan THOMA
Journal of Periodontal & Implant Science 2018;48(3):182-192
PURPOSE: The purpose of the present study was to validate an experimental model for assessing tissue integration of titanium and zirconia implants with and without buccal dehiscence defects. METHODS: In 3 dogs, 5 implants were randomly placed on both sides of the mandibles: 1) Z1: a zirconia implant (modified surface) within the bony housing, 2) Z2: a zirconia implant (standard surface) within the bony housing, 3) T: a titanium implant within the bony housing, 4) Z1_D: a Z1 implant placed with a buccal bone dehiscence defect (3 mm), and 5) T_D: a titanium implant placed with a buccal bone dehiscence defect (3 mm). The healing times were 2 weeks (one side of the mandible) and 6 weeks (the opposite side). RESULTS: The dimensions of the peri-implant soft tissue varied depending on the implant and the healing time. The level of the mucosal margin was located more apically at 6 weeks than at 2 weeks in all groups, except group T. The presence of a buccal dehiscence defect did not result in a decrease in the overall soft tissue dimensions between 2 and 6 weeks (4.80±1.31 and 4.3 mm in group Z1_D, and 4.47±1.06 and 4.5±1.37 mm in group T_D, respectively). The bone-to-implant contact (BIC) values were highest in group Z1 at both time points (34.15%±21.23% at 2 weeks, 84.08%±1.33% at 6 weeks). The buccal dehiscence defects in groups Z1_D and T_D showed no further bone loss at 6 weeks compared to 2 weeks. CONCLUSIONS: The modified surface of Z1 demonstrated higher BIC values than the surface of Z2. There were minimal differences in the mucosal margin between 2 and 6 weeks in the presence of a dehiscence defect. The present model can serve as a useful tool for studying peri-implant dehiscence defects at the hard and soft tissue levels.
Animals
;
Dental Implants
;
Dogs
;
Housing
;
Mandible
;
Models, Theoretical
;
Mouth Mucosa
;
Osseointegration
;
Surface Properties
;
Titanium
2.Influence of wound closure on volume stability with the application of different GBR materials: an in vitro cone-beam computed tomographic study
Nadja NAENNI ; Tanja BERNER ; Tobias WALLER ; Juerg HUESLER ; Christoph Hans Franz HÄMMERLE ; Daniel Stefan THOMA
Journal of Periodontal & Implant Science 2019;49(1):14-24
PURPOSE: To assess the influence of using different combinations of guided bone regeneration (GBR) materials on volume changes after wound closure at peri-implant dehiscence defects. METHODS: In 5 pig mandibles, standardized bone defects were created and implants were centrally placed. The defects were augmented using different combinations of GBR materials: xenogeneic granulate and collagen membrane (group 1, n=10), xenogeneic granulate and alloplastic membrane (group 2, n=10), alloplastic granulates and alloplastic membrane (group 3, n=10). The horizontal thickness was assessed using cone-beam computed tomography before and after suturing. Measurements were performed at the implant shoulder (HT0) and at 1 mm (HT1) and 2 mm (HT2) below. The data were statistically analysed using the Wilcoxon signed-rank test to evaluate within-group differences. Bonferroni correction was applied when calculating statistical significance between the groups. RESULTS: The mean horizontal thickness before suturing was 2.55±0.53 mm (group 1), 1.94±0.56 mm (group 2), and 2.49±0.73 mm (group 3). Post-suturing, the values were 1.47±0.31 mm (group 1), 1.77±0.27 mm (group 2), and 2.00±0.48 mm (group 3). All groups demonstrated a loss of horizontal dimension. Intragroup changes exhibited significant differences in group 1 (P < 0.001) and group 3 (P < 0.01). Intergroup comparisons revealed statistically significant differences of the relative changes between groups 1 and 2 (P=0.033) and groups 1 and 3 (P=0.015). CONCLUSIONS: Volume change after wound closure was minimized by using an alloplastic membrane. The stability of the augmented horizontal thickness was most ensured by using this type of membrane irrespective of the bone substitute material used for membrane support.
Alveolar Ridge Augmentation
;
Bone Regeneration
;
Bone Substitutes
;
Collagen
;
Cone-Beam Computed Tomography
;
In Vitro Techniques
;
Mandible
;
Membranes
;
Shoulder
;
Wounds and Injuries