1.Inhibitory Effects of Eucommia ulmoides Oliv. Bark on Scopolamine-Induced Learning and Memory Deficits in Mice.
Seung Hwan KWON ; Shi Xun MA ; Hyun Joong JOO ; Seok Yong LEE ; Choon Gon JANG
Biomolecules & Therapeutics 2013;21(6):462-469
Eucommia ulmoides Oliv. Bark (EUE) is commonly used for the treatment of hypertension, rheumatoid arthritis, lumbago, and ischialgia as well as to promote longevity. In this study, we tested the effects of EUE aqueous extract in graded doses to protect and enhance cognition in scopolamine-induced learning and memory impairments in mice. EUE significantly improved the impairment of short-term or working memory induced by scopolamine in the Y-maze and significantly reversed learning and memory deficits in mice as measured by the passive avoidance and Morris water maze tests. One day after the last trial session of the Morris water maze test (probe trial session), EUE dramatically increased the latency time in the target quadrant in a dose-dependent manner. Furthermore, EUE significantly inhibited acetylcholinesterase (AChE) and thiobarbituric acid reactive substance (TBARS) activities in the hippocampus and frontal cortex in a dose-dependent manner. EUE also markedly increased brain-derived neurotrophic factor (BDNF) and phosphorylation of cAMP element binding protein (CREB) in the hippocampus of scopolamine-induced mice. Based on these findings, we suggest that EUE may be useful for the treatment of cognitive deficits, and that the beneficial effects of EUE are mediated, in part, by cholinergic signaling enhancement and/or protection.
Acetylcholinesterase
;
Alzheimer Disease
;
Animals
;
Arthritis, Rheumatoid
;
Brain-Derived Neurotrophic Factor
;
Carrier Proteins
;
Cognition
;
Eucommiaceae*
;
Hippocampus
;
Hypertension
;
Learning*
;
Longevity
;
Low Back Pain
;
Maze Learning
;
Memory Disorders*
;
Memory*
;
Memory, Short-Term
;
Mice*
;
Phosphorylation
;
Scopolamine Hydrobromide
2.Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice.
Yong Hyun KO ; Kyu Yeon SHIM ; Seok Yong LEE ; Choon Gon JANG
Biomolecules & Therapeutics 2018;26(5):432-438
Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of γ-aminobutyric acid (GABA)(A) receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the GABA(A)-ergic system.
Animals
;
Caffeine
;
Evodia
;
Fruit
;
Hypothalamus
;
In Vitro Techniques
;
Mice*
;
Motor Activity
3.Potential Functional Role of Phenethylamine Derivatives in Inhibiting Dopamine Reuptake: Structure–Activity Relationship
Dooti KUNDU ; Anlin ZHU ; Eunae KIM ; Suresh PAUDEL ; Choon-Gon JANG ; Yong Sup LEE ; Kyeong-Man KIM
Biomolecules & Therapeutics 2023;31(1):108-115
Numerous psychotropic and addictive substances possess structural features similar to those of β-phenethylamine (β-PEA). In this study, we selected 29 β-PEA derivatives and determined their structure–activity relationship (SAR) to their ability to inhibit dopamine (DA) reuptake; conducted docking simulation for two selected compounds; and identified their potential functionals. The compounds were subdivided into arylethylamines, 2-(alkyl amino)-1-arylalkan-1-one derivatives and alkyl 2-phenyl-2-(piperidin-2-yl)acetate derivatives. An aromatic group, alkyl group, and alkylamine derivative were attached to the arylethylamine and 2-(alkyl amino)-1-arylalkan-1-one derivatives. The inhibitory effect of the compounds on dopamine reuptake increased in the order of the compounds substituted with phenyl, thiophenyl, and substituted phenyl groups in the aromatic position; compounds with longer alkyl groups and smaller ring-sized compounds at the alkylamine position showed stronger inhibitory activities. Docking simulation conducted for two compounds, 9 and 28, showed that the (S)-form of compound 9 was more stable than the (R)-form, with a good fit into the binding site covered by helices 1, 3, and 6 of human dopamine transporter (hDAT). In contrast, the (R, S)-configuration of compound 28 was more stable than that of other isomers and was firmly placed in the binding pocket of DAT bound to DA. DAinduced endocytosis of dopamine D2 receptors was inhibited when they were co-expressed with DAT, which lowered extracellular DA levels, and uninhibited when they were pretreated with compound 9 or 28. In summary, this study revealed critical structural features responsible for the inhibition of DA reuptake and the functional role of DA reuptake inhibitors in regulating D2 receptor function.
4.Structure–Activity Relationship and Evaluation of Phenethylamine and Tryptamine Derivatives for Affinity towards 5-Hydroxytryptamine Type 2A Receptor
Shujie WANG ; Anlin ZHU ; Suresh PAUDEL ; Choon-Gon JANG ; Yong Sup LEE ; Kyeong-Man KIM
Biomolecules & Therapeutics 2023;31(2):176-182
Among 14 subtypes of serotonin receptors (5-HTRs), 5-HT 2AR plays important roles in drug addiction and various psychiatric disorders. Agonists for 5-HT 2AR have been classified into three structural groups: phenethylamines, tryptamines, and ergolines. In this study, the structure-activity relationship (SAR) of phenethylamine and tryptamine derivatives for binding 5-HT 2AR was determined. In addition, functional and regulatory evaluation of selected compounds was conducted for extracellular signal-regulated kinases (ERKs) and receptor endocytosis. SAR studies showed that phenethylamines possessed higher affinity to 5-HT 2AR than tryptamines. In phenethylamines, two phenyl groups were attached to the carbon and nitrogen (R 3 ) atoms of ethylamine, the backbone of phenethylamines. Alkyl or halogen groups on the phenyl ring attached to the β carbon exerted positive effects on the binding affinity when they were at para positions. Oxygen-containing groups attached to R 3 exerted mixed influences depending on the position of their attachment. In tryptamine derivatives, tryptamine group was attached to the β carbon of ethylamine, and ally groups were attached to the nitrogen atom. Oxygen-containing substituents on large ring and alkyl substituents on the small ring of tryptamine groups exerted positive and negative influence on the affinity for 5-HT 2AR, respectively. Ally groups attached to the nitrogen atom of ethylamine exerted negative influences. Functional and regulatory activities of the tested compounds correlated with their affinity for 5-HT 2AR, suggesting their agonistic nature. In conclusion, this study provides information for designing novel ligands for 5-HT 2AR, which can be used to control psychiatric disorders and drug abuse.
5.Antineuroinflammatory Effects of 7,3’,4’-Trihydroxyisoflavone in Lipopolysaccharide-Stimulated BV2 Microglial Cells through MAPK and NF-κB Signaling Suppression
Seon-Kyung KIM ; Yong-Hyun KO ; Youyoung LEE ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2021;29(2):127-134
Neuroinflammation—a common pathological feature of neurodegenerative disorders such as Alzheimer’s disease—is mediated by microglial activation. Thus, inhibiting microglial activation is vital for treating various neurological disorders. 7,3’,4’-Trihydroxyisoflavone (THIF)—a secondary metabolite of the soybean compound daidzein—possesses antioxidant and anticancer properties. However, the effects of 7,3’,4’-THIF on microglial activation have not been explored. In this study, antineuroinflammatory effects of 7,3’,4’-THIF in lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined. 7,3’,4’-THIF significantly suppressed the production of the proinflammatory mediators nitric oxide (NO), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) as well as of the proinflammatory cytokine interleukin-6 (IL-6) in LPS-stimulated BV2 microglial cells. Moreover, 7,3’,4’-THIF markedly inhibited reactive oxygen species (ROS) generation. Western blotting revealed that 7,3’,4’-THIF diminished LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), glycogen synthase kinase-3β (GSK-3β), and nuclear factor kappa B (NF-κB). Overall, 7,3’,4’-THIF exerts antineuroinflammatory effects against LPSinduced microglial activation by suppressing mitogen-activated protein kinase (MAPK) and NF-κB signaling, ultimately reducing proinflammatory responses. Therefore, these antineuroinflammatory effects of 7,3’,4’-THIF suggest its potential as a therapeutic agent for neurodegenerative disorders.
6.Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway
Thi-Lien NGUYEN ; Yun-Son NAM ; Seok-Yong LEE ; Choon-Gon JANG
Biomolecules & Therapeutics 2022;30(4):328-333
Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.
7.Structure–Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor
Shujie WANG ; Xinru TIAN ; Suresh PAUDEL ; Sungho GHIL ; Choon-Gon JANG ; Kyeong-Man KIM
Biomolecules & Therapeutics 2024;32(4):442-450
The type-1 cannabinoid receptor (CB 1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure–activity relationships (SARs) for CB 1R ligands. In this study, CB 1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB 1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB 1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB 1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB 1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB 1R, which can be used to control psychiatric disorders and drug abuse.
8.Structure–Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor
Shujie WANG ; Xinru TIAN ; Suresh PAUDEL ; Sungho GHIL ; Choon-Gon JANG ; Kyeong-Man KIM
Biomolecules & Therapeutics 2024;32(4):442-450
The type-1 cannabinoid receptor (CB 1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure–activity relationships (SARs) for CB 1R ligands. In this study, CB 1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB 1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB 1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB 1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB 1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB 1R, which can be used to control psychiatric disorders and drug abuse.
9.Structure–Activity Relationship and Functional Evaluation of Cannabinoid Type-1 Receptor
Shujie WANG ; Xinru TIAN ; Suresh PAUDEL ; Sungho GHIL ; Choon-Gon JANG ; Kyeong-Man KIM
Biomolecules & Therapeutics 2024;32(4):442-450
The type-1 cannabinoid receptor (CB 1R) is a potential therapeutic target in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Owing to their structural diversity, it is not easy to derive general structure–activity relationships (SARs) for CB 1R ligands. In this study, CB 1R ligands were classified into six structural families, and the corresponding SAR was determined for their affinities for CB 1R. In addition, we determined their functional activities for the activation of extracellular signal-regulated kinases (ERKs). Among derivatives of indol-3-yl-methanone, the highest ligand affinity was observed when a pentyl and a naphthalenyl group were attached to the N1 position of the indole ring and the carbon site of the methanone moiety, respectively. In the case of adamantane indazole-3-carboxamide derivatives, the presence of fluorine in the pentyl group, the substituent at the N1 position of the indazole ring, strongly increased the affinity for CB 1R. For (naphthalen-1-yl) methanone derivatives, the presence of 4-alkoxynaphthalene in the methanone moiety was more beneficial for the affinity to CB 1R than that of a heterocyclic ring. The functional activities of the tested compounds, evaluated through ERK assay, were correlated with their affinity for CB 1R, suggesting their agonistic nature. In conclusion, this study provides valuable insight for designing novel ligands for CB 1R, which can be used to control psychiatric disorders and drug abuse.
10.The Anti-Inflammatory Activity of Eucommia ulmoides Oliv. Bark. Involves NF-κB Suppression and Nrf2-Dependent HO-1 Induction in BV-2 Microglial Cells.
Seung Hwan KWON ; Shi Xun MA ; Ji Young HWANG ; Yong Hyun KO ; Ji Yeon SEO ; Bo Ram LEE ; Seok Yong LEE ; Choon Gon JANG
Biomolecules & Therapeutics 2016;24(3):268-282
In the present study, we investigated the anti-inflammatory properties of Eucommia ulmoides Oliv. Bark. (EUE) in lipopolysaccharide (LPS)-stimulated microglial BV-2 cells and found that EUE inhibited LPS-mediated up-regulation of pro-inflammatory response factors. In addition, EUE inhibited the elevated production of pro-inflammatory cytokines, mediators, and reactive oxygen species (ROS) in LPS-stimulated BV-2 microglial cells. Subsequent mechanistic studies revealed that EUE suppressed LPS-induced phosphorylation of mitogen-activated protein kinases (MAPKs), phosphoinositide-3-kinase (PI3K)/Akt, glycogen synthase kinase-3β (GSK-3β), and their downstream transcription factor, nuclear factor-kappa B (NF-κB). EUE also blocked the nuclear translocation of NF-κB and inhibited its binding to DNA. We next demonstrated that EUE induced the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) and upregulated heme oxygenase-1 (HO-1) expression. We determined that the significant up-regulation of HO-1 expression by EUE was a consequence of Nrf2 nuclear translocation; furthermore, EUE increased the DNA binding of Nrf2. In contrast, zinc protoporphyrin (ZnPP), a specific HO-1 inhibitor, blocked the ability of EUE to inhibit NO and PGE2 production, indicating the vital role of HO-1. Overall, our results indicate that EUE inhibits pro-inflammatory responses by modulating MAPKs, PI3K/Akt, and GSK-3β, consequently suppressing NF-κB activation and inducing Nrf2-dependent HO-1 activation.
Cytokines
;
Dinoprostone
;
DNA
;
Eucommiaceae*
;
Glycogen Synthase
;
Heme Oxygenase-1
;
Mitogen-Activated Protein Kinases
;
Phosphorylation
;
Reactive Oxygen Species
;
Transcription Factors
;
Up-Regulation
;
Zinc