1.Research advances in the inhibitory effect of chondroitin sulfate proteoglycans on axon growth after premature white matter injury and its underlying mechanisms.
Xiao-Jie TIAN ; Rui-Wei GAO ; Chao CHEN
Chinese Journal of Contemporary Pediatrics 2025;27(7):875-880
White matter injury (WMI) is a major form of brain injury in preterm infants. Its characteristic pathological features primarily involve impaired development of oligodendrocyte precursor cells and structural damage to axons, which can lead to the neurological sequelae such as motor, behavioral, and cognitive dysfunctions. Chondroitin sulfate proteoglycans (CSPGs), as the important components of extracellular matrix, can participate in neuroinflammatory response mediated by microglial cells and dynamically balance glial scar reconstruction and axon growth by regulating specific receptors and signaling pathways. This article reviews the relationship between CSPGs and WMI, as well as the mechanisms by which CSPGs inhibit axon growth, focusing on the role of multi-target regulation of CSPGs in promoting axon plasticity and functional brain recovery, thereby providing a theoretical basis for improving the prognosis of preterm infants with WMI.
Humans
;
Chondroitin Sulfate Proteoglycans/physiology*
;
White Matter/pathology*
;
Axons/physiology*
;
Infant, Premature
;
Infant, Newborn
;
Animals
2.Expression of lumican protein in serum of patients with rheumatoid arthritis and its correlation with disease and immune activities.
Ju YANG ; Jing XU ; Juhua DAI ; Lianjie SHI
Journal of Peking University(Health Sciences) 2025;57(5):911-918
OBJECTIVE:
To investigate the serum level of lumican (LUM) and its clinical correlation with disease and immune activities in patients with rheumatoid arthritis (RA).
METHODS:
The serum LUM levels in both RA patients and health controls (HCs) were detected by enzyme-linked immunosorbent assay (ELISA). The clinical and laboratory data of the patients were collected. The LUM levels in the patients with different clinical features were analyzed. The correlation between the clinical data, laboratory parameters, and serum LUM levels were also analyzed. Independent samples t test, Spearman correlation were used for statistical analysis. Analysis of variance and Kruskal-Wallis test, the least significant difference (LSD)-t test and Bonferroni correction were used for statistical analysis. The Pearson Chi-square test was used for comparison of the rates between the groups. Statistical significance was set at P < 0.05.
RESULTS:
The levels of LUM were elevated in the RA patients than in the HCs (P < 0.000 1). Serum LUM levels were correlated with the erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), rheumatoid factor (RF), immunoglobulin A (IgA), titers of platelet (PLT) and 28-joint disease activity score (DAS28, all P < 0.05). Next, we compared the serum LUM levels in the RA patients with different characteristics, and no difference was found in serum LUM levels between early-RA and RA, the same to RA with different gender (P>0.05). The levels of serum LUM were elevated in the RF positive patients (P < 0.000 1), and in the RF and anti-CCP positive patients (P < 0.05) than in the RA patients with negative RF whether the anti-CCP was positive. In addition, no differences were found between the RA patients with negative RF whether the anti-CCP was positive (P>0.05). All the levels of serum LUM were elevated in the RA patients with different CRP or ESR than in the HCs (P < 0.05), and the serum LUM levels in the RA patients with elevated ESR and CRP were significantly elevated in those with normal ESR and CRP (P < 0.05). Additionally, the results demonstrated that serum LUM levels were positively associated with RA disease activity, and they were declined in RA sustained remission than those in middle or high disease activity (P < 0.05). Furthermore, no difference was found between the RA patients in remission and HCs (P>0.05). No differences were found in the RA patients with and without complications including interstitial pneumonia disease, Sjögren's syndrome, thyroid gland diseases and osteoporosis (P>0.05). The LUM positivity rates were significantly elevated in the RF positive patients than the RF negative patients in RA (P < 0.05).
CONCLUSION
LUM, a cyclocitrullinated protein, might be a promising biomarker which could reflect both disease activity and immune activity in RA.
Humans
;
Arthritis, Rheumatoid/immunology*
;
Lumican/blood*
;
C-Reactive Protein/metabolism*
;
Female
;
Male
;
Rheumatoid Factor/blood*
;
Middle Aged
;
Adult
;
Chondroitin Sulfate Proteoglycans/blood*
;
Blood Sedimentation
;
Keratan Sulfate/blood*
;
Enzyme-Linked Immunosorbent Assay
;
Aged
3.The role of tyrosine phosphatase Shp2 in spermatogonial differentiation and spermatocyte meiosis.
Yang LI ; Wen-Sheng LIU ; Jia YI ; Shuang-Bo KONG ; Jian-Cheng DING ; Yi-Nan ZHAO ; Ying-Pu TIAN ; Gen-Sheng FENG ; Chao-Jun LI ; Wen LIU ; Hai-Bin WANG ; Zhong-Xian LU
Asian Journal of Andrology 2020;22(1):79-87
The transition from spermatogonia to spermatocytes and the initiation of meiosis are key steps in spermatogenesis and are precisely regulated by a plethora of proteins. However, the underlying molecular mechanism remains largely unknown. Here, we report that Src homology domain tyrosine phosphatase 2 (Shp2; encoded by the protein tyrosine phosphatase, nonreceptor type 11 [Ptpn11] gene) is abundant in spermatogonia but markedly decreases in meiotic spermatocytes. Conditional knockout of Shp2 in spermatogonia in mice using stimulated by retinoic acid gene 8 (Stra8)-cre enhanced spermatogonial differentiation and disturbed the meiotic process. Depletion of Shp2 in spermatogonia caused many meiotic spermatocytes to die; moreover, the surviving spermatocytes reached the leptotene stage early at postnatal day 9 (PN9) and the pachytene stage at PN11-13. In preleptotene spermatocytes, Shp2 deletion disrupted the expression of meiotic genes, such as disrupted meiotic cDNA 1 (Dmc1), DNA repair recombinase rad51 (Rad51), and structural maintenance of chromosome 3 (Smc3), and these deficiencies interrupted spermatocyte meiosis. In GC-1 cells cultured in vitro, Shp2 knockdown suppressed the retinoic acid (RA)-induced phosphorylation of extracellular-regulated protein kinase (Erk) and protein kinase B (Akt/PKB) and the expression of target genes such as synaptonemal complex protein 3 (Sycp3) and Dmc1. Together, these data suggest that Shp2 plays a crucial role in spermatogenesis by governing the transition from spermatogonia to spermatocytes and by mediating meiotic progression through regulating gene transcription, thus providing a potential treatment target for male infertility.
Animals
;
Cell Cycle Proteins/genetics*
;
Cell Line
;
Cell Survival
;
Chondroitin Sulfate Proteoglycans/genetics*
;
Chromosomal Proteins, Non-Histone/genetics*
;
Gene Expression Regulation
;
Gene Knockdown Techniques
;
Infertility, Male
;
Male
;
Meiosis/genetics*
;
Mice
;
Mice, Knockout
;
Mice, Transgenic
;
Phosphate-Binding Proteins/genetics*
;
Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics*
;
Rad51 Recombinase/genetics*
;
Real-Time Polymerase Chain Reaction
;
Spermatocytes/metabolism*
;
Spermatogenesis/genetics*
;
Spermatogonia/metabolism*
4.A Model of Glial Scarring Analogous to the Environment of a Traumatically Injured Spinal Cord Using Kainate.
Jong Yoon YOO ; Chang Ho HWANG ; Hea Nam HONG
Annals of Rehabilitation Medicine 2016;40(5):757-768
OBJECTIVE: To develop an in vitro model analogous to the environment of traumatic spinal cord injury (SCI), the authors evaluated change of astrogliosis following treatments with kainate and/or scratch, and degree of neurite outgrowth after treatment with a kainate inhibitor. METHODS: Astrocytes were obtained from the rat spinal cord. Then, 99% of the cells were confirmed to be GFAP-positive astrocytes. For chemical injury, the cells were treated with kainate at different concentrations (10, 50 or 100 µM). For mechanical injury, two kinds of uniform scratches were made using a plastic pipette tip by removing strips of cells. For combined injury (S/K), scratch and kainate were provided. Cord neurons from rat embryos were plated onto culture plates immediately after the three kinds of injuries and some cultures were treated with a kainate inhibitor. RESULTS: Astro-gliosis (glial fibrillary acidic protein [GFAP], vimentin, chondroitin sulfate proteoglycan [CSPG], rho-associated protein kinase [ROCK], and ephrin type-A receptor 4 [EphA4]) was most prominent after treatment with 50 µM kainate and extensive scratch injury in terms of single arm (p<0.001) and in the S/K-induced injury model in view of single or combination (p<0.001). Neurite outgrowth in the seeded spinal cord (β-III tubulin) was the least in the S/K-induced injury model (p<0.001) and this inhibition was reversed by the kainate inhibitor (p<0.001). CONCLUSION: The current in vitro model combining scratch and kainate induced glial scarring and inhibitory molecules and restricted neurite outgrowth very strongly than either the mechanically or chemically-induced injury model; hence, it may be a useful tool for research on SCI.
Animals
;
Arm
;
Astrocytes
;
Chondroitin Sulfate Proteoglycans
;
Cicatrix*
;
Embryonic Structures
;
In Vitro Techniques
;
Kainic Acid*
;
Neurites
;
Neuroglia
;
Neurons
;
Plastics
;
Protein Kinases
;
Rats
;
Spinal Cord Injuries
;
Spinal Cord*
;
Vimentin
5.Expression of Hyaluronidase-4 in a Rat Spinal Cord Hemisection Model.
Yoshiyuki TACHI ; Tetsuhito OKUDA ; Norio KAWAHARA ; Nobuo KATO ; Yasuhito ISHIGAKI ; Tadami MATSUMOTO
Asian Spine Journal 2015;9(1):7-13
STUDY DESIGN: Examination of hyaluronidase-4 (Hyal-4) expression in a rat spinal cord hemisection model. PURPOSE: To determine the status of Hyal-4 expression after hemisection of the spinal cord, and the relationship between its expression and that of chondroitin sulfate proteoglycans (CSPGs). OVERVIEW OF LITERATURE: CSPGs are expressed at the site of spinal cord injury and inhibit axon regeneration. Administration of exogenous chrondroitinase ABC (ChABC), derived from bacteria, digested CSPGs and promoted axonal regrowth. Using a rat hemisection model, we have demonstrated peak CSPGs levels at by 3 weeks after injury but then decreased spontaneously. Could there be an endogenous enzyme similar to ChABC in the spinal cord? It has been suggested that Hyal-4 is involved in CSPG degradation. METHODS: A rat hemisection model was prepared and spinal cord frozen sections were prepared at 4 days and 1, 2, 3, 4, 5, and 6 weeks post-cordotomy and stained for CSPGs and Hyal-4 and subjected to Western blotting. RESULTS: CSPGs appeared at the injury site at 4 days after hemisection, reached a peak after 3 weeks, and then decreased. Hyal-4 was observed around the injury site from 4 days after cordotomy and increased until after 5-6 weeks. Double staining showed Hyal-4 around CSPGs. Western blotting identified a band corresponding to Hyal-4 from 4 days after hemisection. CONCLUSIONS: Hyal-4 was expressed in a rat hemisection model in areas surrounding CSPGs, and as its peak was delayed compared with that of CSPGs. These results suggest the involvement of Hyal-4 in the digestion of CSPGs.
Animals
;
Axons
;
Bacteria
;
Blotting, Western
;
Chondroitin Sulfate Proteoglycans
;
Cordotomy
;
Digestion
;
Frozen Sections
;
Hyaluronoglucosaminidase
;
Rats*
;
Regeneration
;
Spinal Cord Injuries
;
Spinal Cord*
6.Perineuronal net, CSPG receptor and their regulation of neural plasticity.
Qing-Long MIAO ; ; Qian YE ; Xiao-Hui ZHANG
Acta Physiologica Sinica 2014;66(4):387-397
Perineuronal nets (PNNs) are reticular structures resulting from the aggregation of extracellular matrix (ECM) molecules around the cell body and proximal neurite of specific population of neurons in the central nervous system (CNS). Since the first description of PNNs by Camillo Golgi in 1883, the molecular composition, developmental formation and potential functions of these specialized extracellular matrix structures have only been intensively studied over the last few decades. The main components of PNNs are hyaluronan (HA), chondroitin sulfate proteoglycans (CSPGs) of the lectican family, link proteins and tenascin-R. PNNs appear late in neural development, inversely correlating with the level of neural plasticity. PNNs have long been hypothesized to play a role in stabilizing the extracellular milieu, which secures the characteristic features of enveloped neurons and protects them from the influence of malicious agents. Aberrant PNN signaling can lead to CNS dysfunctions like epilepsy, stroke and Alzheimer's disease. On the other hand, PNNs create a barrier which constrains the neural plasticity and counteracts the regeneration after nerve injury. Digestion of PNNs with chondroitinase ABC accelerates functional recovery from the spinal cord injury and restores activity-dependent mechanisms for modifying neuronal connections in the adult animals, indicating that PNN is an important regulator of neural plasticity. Here, we review recent progress in the studies on the formation of PNNs during early development and the identification of CSPG receptor - an essential molecular component of PNN signaling, along with a discussion on their unique regulatory roles in neural plasticity.
Animals
;
Central Nervous System
;
physiology
;
physiopathology
;
Chondroitin Sulfate Proteoglycans
;
Extracellular Matrix
;
physiology
;
Humans
;
Neuronal Plasticity
;
Neurons
;
Receptors, Cell Surface
;
physiology
7.A ROCK Inhibitor Blocks the Inhibitory Effect of Chondroitin Sulfate Proteoglycan on Morphological Changes of Mesenchymal Stromal/Stem Cells into Neuron-Like Cells.
Biomolecules & Therapeutics 2013;21(6):447-453
Chondroitin sulfate proteoglycan (CSPG) inhibits neurite outgrowth of various neuronal cell types, and CSPG-associated inhibition of neurite outgrowth is mediated by the Rho/ROCK pathway. Mesenchymal stromal/stem cells (MSCs) have the potential to differentiate into neuron-like cells under specific conditions and have been shown to differentiate into neuron-like cells by co-treatment with the ROCK inhibitor Y27632 and the hypoxia condition mimicking agent CoCl2. In this study, we addressed the hypothesis that a ROCK inhibitor might be beneficial to regenerate neurons during stem cell therapy by preventing transplanted MSCs from inhibition by CSPG in damaged tissues. Indeed, dose-dependent inhibition by CSPG pretreatment was observed during morphological changes of Wharton's jelly-derived MSCs (WJ-MSCs) induced by Y27632 alone. The formation of neurite-like structures was significantly inhibited when WJ-MSCs were pre-treated with CSPG before induction under Y27632 plus CoCl2 conditions, and pretreatment with a protein kinase C inhibitor reversed such inhibition. However, CSPG treatment resulted in no significant inhibition of the WJ-MSC morphological changes into neuron-like cells after initiating induction by Y27632 plus CoCl2. No marked changes were detected in expression levels of neuronal markers induced by Y27632 plus CoCl2 upon CSPG treatment. CSPG also blocked the morphological changes of human bone marrow-derived MSCs into neuron-like cells under other neuronal induction condition without the ROCK inhibitor, and Y27632 pre-treatment blocked the inhibitory effect of CSPG. These results suggest that a ROCK inhibitor can be efficiently used in stem cell therapy for neuronal induction by avoiding hindrance from CSPG.
Anoxia
;
Chondroitin Sulfate Proteoglycans*
;
Chondroitin Sulfates*
;
Chondroitin*
;
Humans
;
Neurites
;
Neurons
;
Protein Kinase C
;
Stem Cells
8.Effective Keratocyte Culture Using Amniotic Membrane Matrix and Differentiation of Mesenchymal Stem Cells.
Soo Hyun PARK ; Yeoun Sook CHUN ; Jae Chan KIM
Journal of the Korean Ophthalmological Society 2010;51(12):1652-1658
PURPOSE: To investigate the characteristics of cultured rabbit corneal keratocytes in vitro and evaluate the possibility of differentiation of mesenchymal stem cells to keratocytes using the keratocyte conditioned medium (KCM). METHODS: Isolated keratocytes were seeded on the stromal side of amniotic membranes (AM) or plastic dishes, and morphologic changes were evaluated. Rabbit mesenchymal stem cells were cultured on AM with alpha-MEM (minimum essential medium alpha) and KCM. The gene expression patterns of specific keratocyte markers (keratocan, lumican, and aldehyde dehydrogenase family, member A1 (ALDH1A1)) of cultured cells were evaluated by RT-PCR. RESULTS: Keratocytes on AM showed dendritic morphology with slow proliferation in contrast, cells on dishes were stellate in shape with fast proliferation. Cultured keratocytes on AM maintained the expression of keratocan, lumican and ALDH1A1 while keratocytes on plastic dishes steadily lost their keratocyte marker gene expression. Additionally, mesenchymal stem cells cultured with KCM on AM induced expression of keratocan and ALDH1A1. CONCLUSIONS: Keratocytes cultured on AM stromal matrix maintained their characteristic morphology and marker gene expression. Morphology changes and marker gene expressions of mesenchymal stem cells suggest an ability to differentiate into keratocytes when grown on AM with KCM.
Aldehyde Dehydrogenase
;
Amnion
;
Cells, Cultured
;
Chondroitin Sulfate Proteoglycans
;
Corneal Keratocytes
;
Culture Media, Conditioned
;
Gene Expression
;
Humans
;
Keratan Sulfate
;
Mesenchymal Stromal Cells
;
Organic Chemicals
;
Plastics
;
Seeds
9.Change of structural maintenance of chromosome (SMC)1, SMC3, Separase and Securin expression in BEAS-2B malignant transformation cell induced by coal tar pitch smoke extracts.
Zhi-Tao LI ; Wei WANG ; Yong ZHAO ; Li-Xia WANG ; Han-Song ZHU ; Wei-Dong WU ; Yi-Ming WU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2010;28(10):776-780
OBJECTIVEto study the role of structural maintenance of chromosome (SMC)1, SMC3, Separase and Securin in tumorgenesis that contact with coal tar pitch.
METHODSthe BEAS-2B cells was induced by coal tar pitch smoke extracts to form malignant transformation cell model in vitro. The gene expression levels of mRNA were assessed by real-time quantitative RT-PCR, and the protein expression variation were determined by cell culture overslip of immunohistochemical methods.
RESULTSin malignant transformation cells, the mRNA and the protein expression level of SMC1 gene was not statistically significantly different compared with the BEAS-2B group and DMSO group (P > 0.05); SMC3 and Separase was increased and Securin was decreased (P < 0.05), while the difference between other two control groups was not significant (P > 0.05).
CONCLUSIONSthe up expression level of SMC3 and Separase and the down expression level of Securin are involved in the process that evolves into malignant transformation in bronchial epithelial cells BEAS-2B induced by coal tar pitch smoke extracts.
Bronchi ; cytology ; Cell Cycle Proteins ; metabolism ; Cell Line ; Cell Line, Transformed ; cytology ; drug effects ; Chondroitin Sulfate Proteoglycans ; metabolism ; Chromosomal Proteins, Non-Histone ; metabolism ; Coal Tar ; toxicity ; Endopeptidases ; metabolism ; Epithelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Membrane Proteins ; metabolism ; Separase ; Sister Chromatid Exchange ; Smoke ; adverse effects
10.The Effect of Methylprednisolone and Riluzole on Axonal Growth after Acute Spinal Cord Injury in Rats.
Chang Hwa HONG ; Jun Young YANG ; June Kyu LEE ; Ho Sup SONG
The Journal of the Korean Orthopaedic Association 2008;43(6):783-790
PURPOSE: To determine the effect of methylprednisolone (MP) and riluzole administration on axonal growth after spinal cord injury (SCI) in rats. MATERIALS AND METHODS: Three Sprague Dawley rats (SD rat) served as controls (average 24 weeks of age) and 24 SCI SD rats scoring below 7 points on on Basso, Beattie, and Bresnahan open field test served as test subjects (total 27 SD rats; mean weight 581 g, range=427-613 g). Test subjects were divided into two groups of 12 subjects each. Group I was injected with saline (1 ml/kg) and group II was injected with MP (300 mg/kg) and riluzole (5 mg/kg) intraperitoneally. Four SD rats were sacrificed in each group at the following time points after SCI: days 1, 4, and 7. We completed behavioral testing, immunohistochemical staining and RT-PCR for chondroitin sulfate proteoglycans (CSPG), and microarrays for c-JUN, ATF-2, p53, and Elk-1. RESULTS: On behavioral testing, group II showed superior results at only day 4 after SCI (p<0.05). On RT-PCR for CSPG, optical densities were 2.06 (ratio=Group I/Group II) and 2.11 at days 4 and 7, respectively. Microarray showed that lower expression of c-JUN in group II during the entire period (p< 0.05). ATF-2 showed lower expression in group II at days 4 and 7 (p<0.05). p53 showed lower expression in group I at day 1 (p<0.05). Elk-1 showed lower expression in group I at day 1 (p<0.05) and in group II at day 7 (p<0.05). CONCLUSION: Simultaneous administration of MP and riluzole led to various changes in the MAPK pathway, and decreased CSPG. Therefore, this method has a protective effect on axonal regeneration after SCI in an SD rat model.
Animals
;
Axons
;
Chondroitin Sulfate Proteoglycans
;
Methylprednisolone
;
Rats
;
Rats, Sprague-Dawley
;
Regeneration
;
Riluzole
;
Spinal Cord
;
Spinal Cord Injuries

Result Analysis
Print
Save
E-mail