1.Pigment epithelium-derived factor from ARPE19 promotes proliferation and inhibits apoptosis of human umbilical mesenchymal stem cells in serum-free medium.
Dah Ching DING ; Yao Tseng WEN ; Rong Kung TSAI
Experimental & Molecular Medicine 2017;49(12):e411-
Clinical expansion of mesenchymal stem cells (MSCs) is hampered by the lack of knowledge regarding how to prevent MSC apoptosis and promote their proliferation in serum-free medium. Our in vitro studies demonstrated that human umbilical cord MSCs (HUCMSCs) underwent apoptosis in the serum-free medium. When HUCMSCs were co-cultured with retinal pigment epithelial cells (ARPE19), however, HUCMSCs exhibited normal growth and morphology in serum-free medium. Their colony formation was promoted by the conditioned medium (CM) of ARPE19 cells on Matrigel. Proteomics analysis showed that pigment epithelium-derived factor (PEDF) was one of the most abundant extracellular proteins in the ARPE19 CM, whereas enzyme-linked immunosorbent assay confirmed that large amounts of PEDF was secreted from ARPE19 cells. Adding anti-PEDF-blocking antibodies to the co-culture of HUCMSCs with ARPE19 cells increased apoptosis of HUCMSCs. Conversely, treatment with PEDF significantly reduced apoptosis and increased proliferation of HUCMSCs in serum-free medium. PEDF was further demonstrated to exert this anti-apoptotic effect by inhibiting P53 expression to suppress caspase activation. In vivo studies demonstrated that co-injection of HUCMSCs with ARPE19 cells in immunocompromised NOD-SCID mice also increased survival and decreased apoptosis of HUCMSCs. PEDF also showed no negative effect on the mesoderm differentiation capability of HUCMSCs. In conclusion, this study is the first to demonstrate that PEDF promotes HUCMSC proliferation and protects them from apoptosis by reducing p53 expression in the serum-free medium. This study provides crucial information for clinical-scale expansion of HUCMSCs.
2.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
3.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
4.Alpha-Lipoic Acid Induces Adipose Tissue Browning through AMP-Activated Protein Kinase Signaling in Vivo and in Vitro
Shieh-Yang HUANG ; Ming-Ting CHUNG ; Ching-Wen KUNG ; Shu-Ying CHEN ; Yi-Wen CHEN ; Tong PAN ; Pao-Yun CHENG ; Hsin-Hsueh SHEN ; Yen-Mei LEE
Journal of Obesity & Metabolic Syndrome 2024;33(2):177-188
Background:
AMP-activated protein kinase (AMPK) is a key enzyme for cellular energy homeostasis and improves metabolic disorders. Brown and beige adipose tissues exert thermogenesis capacities to dissipate energy in the form of heat. Here, we investigated the beneficial effects of the antioxidant alpha-lipoic acid (ALA) in menopausal obesity and the underlying mechanisms.
Methods:
Female Wistar rats (8 weeks old) were subjected to bilateral ovariectomy (Ovx) and divided into four groups: Sham (n=8), Ovx (n=11), Ovx+ALA2 (n=10), and Ovx+ALA3 (n=6) (ALA 200 and 300 mg/kg/day, respectively; gavage) for 8 weeks. 3T3-L1 cells were used for in vitro study.
Results:
Rats receiving ALA2 and ALA3 treatment showed significantly lower levels of body weight and white adipose tissue (WAT) mass than those of the Ovx group. ALA improved plasma lipid profiles including triglycerides, total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol. Hematoxylin & eosin staining of inguinal WAT showed that ALA treatment reduced Ovx-induced adipocyte size and enhanced uncoupling protein 1 (UCP1) expression. Moreover, plasma levels of irisin were markedly increased in ALA-treated Ovx rats. Protein expression of brown fat-specific markers including UCP1, PRDM16, and CIDEA was downregulated by Ovx but markedly increased by ALA. Phosphorylation of AMPK, its downstream acetyl-CoA carboxylase, and its upstream LKB1 were all significantly increased by ALA treatment. In 3T3-L1 cells, administration of ALA (100 and 250 μM) reduced lipid accumulation and enhanced oxygen consumption and UCP1 protein expression, while inhibition of AMPK by dorsomorphin (5 μM) significantly reversed these effects.
Conclusion
ALA improves estrogen deficiency-induced obesity via browning of WAT through AMPK signaling.
5.Association of USP26 haplotypes in men in Taiwan, China with severe spermatogenic defect.
I-Wen LEE ; Long-Ching KUAN ; Chien-Hung LIN ; Hsien-An PAN ; Chao-Chin HSU ; Yung-Chieh TSAI ; Pao-Lin KUO ; Yen-Ni TENG
Asian Journal of Andrology 2008;10(6):896-904
AIMTo complete comprehensive haplotype analysis of USP26 for both fertile and infertile men.
METHODSTwo hundred infertile men with severe oligospermia or non-obstructive azoospermia were subjected to sequence analysis for the entire coding sequences of the USP26 gene. Two hundred men with proven fertility were genotyped by primer extension methods. Allele/genotype frequencies, linkage disequilibrium (LD) characteristics and haplotypes of fertile men were compared with infertile men.
RESULTSThe allele frequencies of five single nucleotide polymorphisms (370-371insACA, 494T>C, 576G>A, ss6202791C>T, 1737G>A) were significantly higher in infertile patients than control subjects. The major haplotypes in infertile men were TACCGA (28% of the population), TGCCGA (15%), TACCAA (8%), TGCCAA (6%), TATCAA (5%) and CATCAA (5%). The major haplotypes for the control subjects were TACCGA (58% of the population), CACCGA (7%), CATCGA (6%) and TGCCGA (5%). Haplotypes TGCCGA, TATCAA, CATCAA, CATCGC, TACCAA and TGCCAA were over-transmitted in patients with spermatogenic defect, whereas haplotypes TACCGA, CACCGA, and CATCGA were under-transmitted in these patients.
CONCLUSIONSome USP26 alleles and haplotypes are associated with spermatogenic defect in the Han nationality in Taiwan, China.
Adult ; Alleles ; Azoospermia ; epidemiology ; genetics ; Cysteine Endopeptidases ; genetics ; DNA Primers ; Gene Frequency ; Genetic Variation ; Genotype ; Haplotypes ; Humans ; Infertility, Male ; epidemiology ; genetics ; Linkage Disequilibrium ; Male ; Multigene Family ; Oligospermia ; epidemiology ; genetics ; Polymorphism, Genetic ; Spermatogenesis ; genetics ; physiology ; Taiwan ; epidemiology
6.Hip fracture is associated with a reduced risk of type 2 diabetes: A retrospective cohort study
Suhas KRISHNAMOORTHY ; Casey Tze-Lam TANG ; Warrington Wen-Qiang HSU ; Gloria Hoi-Yee LI ; Chor-Wing SING ; Xiaowen ZHANG ; Kathryn Choon-Beng TAN ; Bernard Man-Yung CHEUNG ; Ian Chi-Kei WONG ; Annie Wai-Chee KUNG ; Ching-Lung CHEUNG
Osteoporosis and Sarcopenia 2024;10(2):60-65
Objectives:
Type 2 diabetes mellitus (T2DM) shares a complex relationship with bone metabolism and few studies investigated the effect of impaired bone health on the risk of T2DM. This study was conducted to investigate the association between hip fractures and the risk of incident T2DM.
Methods:
This is a retrospective cohort study using data from the real-world hip fracture cohort. Hong Kong Chinese patients aged ≥ 65 years without T2DM who were admitted to public hospitals due to a fall between 2008 and 2015 were included in the study. Patients who sustained falls with and without hip fractures were matched by propensity score (PS) at a 1:1 ratio. Competing risk regression was used to evaluate the association between hip fracture and incident T2DM, with death being the competing event.
Results:
A total of 23,314 hip fracture cases were matched to 23,314 controls. The median follow-up time was 5.09 years. The incidence rate of T2DM was 11.947 and 14.505 per 1000 person-years for the hip fracture and control group respectively. After accounting for the competing risk of death, the hip fracture group had a significantly lower risk of developing T2DM (HR: 0.771, 95% CI: 0.719–0.827). Similar results were observed in all subgroups after stratification by age and sex.
Conclusions
Hip fracture was found to be associated with a reduced risk of T2DM. These findings provide insight into the topic of bone and glucose metabolism and prompt further research in evaluating the role of bone health in the management of T2DM.