1.Factors Associated with Postoperative Recurrence in Stage I to IIIA Non–Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation: Analysis of Korean National Population Data
Kyu Yean KIM ; Ho Cheol KIM ; Tae Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang Gun SUH ; Chang Hoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jae Hyun JEON ; Chi Young JUNG ; Jeong Su CHO ; Yoo Duk CHOI ; Seung Sik HWANG ; Chang Min CHOI ; Seung Hun JANG ; Jeong Uk LIM ;
Cancer Research and Treatment 2025;57(1):83-94
Purpose:
Recent development in perioperative treatment of resectable non–small cell lung cancer (NSCLC) have changed the landscape of early lung cancer management. The ADAURA trial has demonstrated the efficacy of adjuvant osimertinib treatment in resectable NSCLC patients; however, studies are required to show which subgroup of patients are at a high risk of relapse and require adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment. This study evaluated risk factors for postoperative relapse among patients who underwent complete resection.
Materials and Methods:
Data were obtained from the Korean Association for Lung Cancer Registry (KALC-R), a database created using a retrospective sampling survey by the Korean Central Cancer Registry (KCCR) and the Lung Cancer Registration Committee.
Results:
A total of 3,176 patients who underwent curative resection was evaluated. The mean observation time was approximately 35.4 months. Among stage I to IIIA NSCLC patients, the EGFR-mutant subgroup included 867 patients, and 75.2%, 11.2%, and 11.8% were classified as stage I, stage II, and stage III, respectively. Within the EGFR-mutant subgroup, 44 (5.1%) and 121 (14.0%) patients showed early and late recurrence, respectively. Multivariate analysis on association with postoperative relapse among the EGFR-mutant subgroup showed that age, pathologic N and TNM stages, pleural invasion status, and surgery type were independent significant factors.
Conclusion
Among the population that underwent complete resection for early NSCLC with EGFR mutation, patients with advanced stage, pleural invasion, or limited resection are more likely to show postoperative relapse.
2.Factors Associated with Postoperative Recurrence in Stage I to IIIA Non–Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation: Analysis of Korean National Population Data
Kyu Yean KIM ; Ho Cheol KIM ; Tae Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang Gun SUH ; Chang Hoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jae Hyun JEON ; Chi Young JUNG ; Jeong Su CHO ; Yoo Duk CHOI ; Seung Sik HWANG ; Chang Min CHOI ; Seung Hun JANG ; Jeong Uk LIM ;
Cancer Research and Treatment 2025;57(1):83-94
Purpose:
Recent development in perioperative treatment of resectable non–small cell lung cancer (NSCLC) have changed the landscape of early lung cancer management. The ADAURA trial has demonstrated the efficacy of adjuvant osimertinib treatment in resectable NSCLC patients; however, studies are required to show which subgroup of patients are at a high risk of relapse and require adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment. This study evaluated risk factors for postoperative relapse among patients who underwent complete resection.
Materials and Methods:
Data were obtained from the Korean Association for Lung Cancer Registry (KALC-R), a database created using a retrospective sampling survey by the Korean Central Cancer Registry (KCCR) and the Lung Cancer Registration Committee.
Results:
A total of 3,176 patients who underwent curative resection was evaluated. The mean observation time was approximately 35.4 months. Among stage I to IIIA NSCLC patients, the EGFR-mutant subgroup included 867 patients, and 75.2%, 11.2%, and 11.8% were classified as stage I, stage II, and stage III, respectively. Within the EGFR-mutant subgroup, 44 (5.1%) and 121 (14.0%) patients showed early and late recurrence, respectively. Multivariate analysis on association with postoperative relapse among the EGFR-mutant subgroup showed that age, pathologic N and TNM stages, pleural invasion status, and surgery type were independent significant factors.
Conclusion
Among the population that underwent complete resection for early NSCLC with EGFR mutation, patients with advanced stage, pleural invasion, or limited resection are more likely to show postoperative relapse.
3.Palliative Care and Hospice for Heart Failure Patients: Position Statement From the Korean Society of Heart Failure
Seung-Mok LEE ; Hae-Young LEE ; Shin Hye YOO ; Hyun-Jai CHO ; Jong-Chan YOUN ; Seong-Mi PARK ; Jin-Ok JEONG ; Min-Seok KIM ; Chi Young SHIM ; Jin Joo PARK ; Kye Hun KIM ; Eung Ju KIM ; Jeong Hoon YANG ; Jae Yeong CHO ; Sang-Ho JO ; Kyung-Kuk HWANG ; Ju-Hee LEE ; In-Cheol KIM ; Gi Beom KIM ; Jung Hyun CHOI ; Sung-Hee SHIN ; Wook-Jin CHUNG ; Seok-Min KANG ; Myeong Chan CHO ; Dae-Gyun PARK ; Byung-Su YOO
International Journal of Heart Failure 2025;7(1):32-46
Heart failure (HF) is a major cause of mortality and morbidity in South Korea, imposing substantial physical, emotional, and financial burdens on patients and society. Despite the high burden of symptom and complex care needs of HF patients, palliative care and hospice services remain underutilized in South Korea due to cultural, institutional, and knowledge-related barriers. This position statement from the Korean Society of Heart Failure emphasizes the need for integrating palliative and hospice care into HF management to improve quality of life and support holistic care for patients and their families. By clarifying the role of palliative care in HF and proposing practical referral criteria, this position statement aims to bridge the gap between HF and palliative care services in South Korea, ultimately improving patient-centered outcomes and aligning treatment with the goals and values of HF patients.
4.Factors Associated with Postoperative Recurrence in Stage I to IIIA Non–Small Cell Lung Cancer with Epidermal Growth Factor Receptor Mutation: Analysis of Korean National Population Data
Kyu Yean KIM ; Ho Cheol KIM ; Tae Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang Gun SUH ; Chang Hoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jae Hyun JEON ; Chi Young JUNG ; Jeong Su CHO ; Yoo Duk CHOI ; Seung Sik HWANG ; Chang Min CHOI ; Seung Hun JANG ; Jeong Uk LIM ;
Cancer Research and Treatment 2025;57(1):83-94
Purpose:
Recent development in perioperative treatment of resectable non–small cell lung cancer (NSCLC) have changed the landscape of early lung cancer management. The ADAURA trial has demonstrated the efficacy of adjuvant osimertinib treatment in resectable NSCLC patients; however, studies are required to show which subgroup of patients are at a high risk of relapse and require adjuvant epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor treatment. This study evaluated risk factors for postoperative relapse among patients who underwent complete resection.
Materials and Methods:
Data were obtained from the Korean Association for Lung Cancer Registry (KALC-R), a database created using a retrospective sampling survey by the Korean Central Cancer Registry (KCCR) and the Lung Cancer Registration Committee.
Results:
A total of 3,176 patients who underwent curative resection was evaluated. The mean observation time was approximately 35.4 months. Among stage I to IIIA NSCLC patients, the EGFR-mutant subgroup included 867 patients, and 75.2%, 11.2%, and 11.8% were classified as stage I, stage II, and stage III, respectively. Within the EGFR-mutant subgroup, 44 (5.1%) and 121 (14.0%) patients showed early and late recurrence, respectively. Multivariate analysis on association with postoperative relapse among the EGFR-mutant subgroup showed that age, pathologic N and TNM stages, pleural invasion status, and surgery type were independent significant factors.
Conclusion
Among the population that underwent complete resection for early NSCLC with EGFR mutation, patients with advanced stage, pleural invasion, or limited resection are more likely to show postoperative relapse.
5.Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Ming-Ying LU ; Chung-Feng HUANG ; Chao-Hung HUNG ; Chi‐Ming TAI ; Lein-Ray MO ; Hsing-Tao KUO ; Kuo-Chih TSENG ; Ching-Chu LO ; Ming-Jong BAIR ; Szu-Jen WANG ; Jee-Fu HUANG ; Ming-Lun YEH ; Chun-Ting CHEN ; Ming-Chang TSAI ; Chien-Wei HUANG ; Pei-Lun LEE ; Tzeng-Hue YANG ; Yi-Hsiang HUANG ; Lee-Won CHONG ; Chien-Lin CHEN ; Chi-Chieh YANG ; Sheng‐Shun YANG ; Pin-Nan CHENG ; Tsai-Yuan HSIEH ; Jui-Ting HU ; Wen-Chih WU ; Chien-Yu CHENG ; Guei-Ying CHEN ; Guo-Xiong ZHOU ; Wei-Lun TSAI ; Chien-Neng KAO ; Chih-Lang LIN ; Chia-Chi WANG ; Ta-Ya LIN ; Chih‐Lin LIN ; Wei-Wen SU ; Tzong-Hsi LEE ; Te-Sheng CHANG ; Chun-Jen LIU ; Chia-Yen DAI ; Jia-Horng KAO ; Han-Chieh LIN ; Wan-Long CHUANG ; Cheng-Yuan PENG ; Chun-Wei- TSAI ; Chi-Yi CHEN ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(1):64-79
Background/Aims:
Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy.
Methods:
We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment.
Results:
The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset.
Conclusions
Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.
6.Metformin and statins reduce hepatocellular carcinoma risk in chronic hepatitis C patients with failed antiviral therapy
Pei-Chien TSAI ; Chung-Feng HUANG ; Ming-Lun YEH ; Meng-Hsuan HSIEH ; Hsing-Tao KUO ; Chao-Hung HUNG ; Kuo-Chih TSENG ; Hsueh-Chou LAI ; Cheng-Yuan PENG ; Jing-Houng WANG ; Jyh-Jou CHEN ; Pei-Lun LEE ; Rong-Nan CHIEN ; Chi-Chieh YANG ; Gin-Ho LO ; Jia-Horng KAO ; Chun-Jen LIU ; Chen-Hua LIU ; Sheng-Lei YAN ; Chun-Yen LIN ; Wei-Wen SU ; Cheng-Hsin CHU ; Chih-Jen CHEN ; Shui-Yi TUNG ; Chi‐Ming TAI ; Chih-Wen LIN ; Ching-Chu LO ; Pin-Nan CHENG ; Yen-Cheng CHIU ; Chia-Chi WANG ; Jin-Shiung CHENG ; Wei-Lun TSAI ; Han-Chieh LIN ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Jee-Fu HUANG ; Chia-Yen DAI ; Wan-Long CHUNG ; Ming-Jong BAIR ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(3):468-486
Background/Aims:
Chronic hepatitis C (CHC) patients who failed antiviral therapy are at increased risk for hepatocellular carcinoma (HCC). This study assessed the potential role of metformin and statins, medications for diabetes mellitus (DM) and hyperlipidemia (HLP), in reducing HCC risk among these patients.
Methods:
We included CHC patients from the T-COACH study who failed antiviral therapy. We tracked the onset of HCC 1.5 years post-therapy by linking to Taiwan’s cancer registry data from 2003 to 2019. We accounted for death and liver transplantation as competing risks and employed Gray’s cumulative incidence and Cox subdistribution hazards models to analyze HCC development.
Results:
Out of 2,779 patients, 480 (17.3%) developed HCC post-therapy. DM patients not using metformin had a 51% increased risk of HCC compared to non-DM patients, while HLP patients on statins had a 50% reduced risk compared to those without HLP. The 5-year HCC incidence was significantly higher for metformin non-users (16.5%) versus non-DM patients (11.3%; adjusted sub-distribution hazard ratio [aSHR]=1.51; P=0.007) and metformin users (3.1%; aSHR=1.59; P=0.022). Statin use in HLP patients correlated with a lower HCC risk (3.8%) compared to non-HLP patients (12.5%; aSHR=0.50; P<0.001). Notably, the increased HCC risk associated with non-use of metformin was primarily seen in non-cirrhotic patients, whereas statins decreased HCC risk in both cirrhotic and non-cirrhotic patients.
Conclusions
Metformin and statins may have a chemopreventive effect against HCC in CHC patients who failed antiviral therapy. These results support the need for personalized preventive strategies in managing HCC risk.
7.Conventional and machine learning-based risk scores for patients with early-stage hepatocellular carcinoma
Chun-Ting HO ; Elise Chia-Hui TAN ; Pei-Chang LEE ; Chi-Jen CHU ; Yi-Hsiang HUANG ; Teh-Ia HUO ; Yu-Hui SU ; Ming-Chih HOU ; Jaw-Ching WU ; Chien-Wei SU
Clinical and Molecular Hepatology 2024;30(3):406-420
Background/Aims:
The performance of machine learning (ML) in predicting the outcomes of patients with hepatocellular carcinoma (HCC) remains uncertain. We aimed to develop risk scores using conventional methods and ML to categorize early-stage HCC patients into distinct prognostic groups.
Methods:
The study retrospectively enrolled 1,411 consecutive treatment-naïve patients with the Barcelona Clinic Liver Cancer (BCLC) stage 0 to A HCC from 2012 to 2021. The patients were randomly divided into a training cohort (n=988) and validation cohort (n=423). Two risk scores (CATS-IF and CATS-INF) were developed to predict overall survival (OS) in the training cohort using the conventional methods (Cox proportional hazards model) and ML-based methods (LASSO Cox regression), respectively. They were then validated and compared in the validation cohort.
Results:
In the training cohort, factors for the CATS-IF score were selected by the conventional method, including age, curative treatment, single large HCC, serum creatinine and alpha-fetoprotein levels, fibrosis-4 score, lymphocyte-tomonocyte ratio, and albumin-bilirubin grade. The CATS-INF score, determined by ML-based methods, included the above factors and two additional ones (aspartate aminotransferase and prognostic nutritional index). In the validation cohort, both CATS-IF score and CATS-INF score outperformed other modern prognostic scores in predicting OS, with the CATSINF score having the lowest Akaike information criterion value. A calibration plot exhibited good correlation between predicted and observed outcomes for both scores.
Conclusions
Both the conventional Cox-based CATS-IF score and ML-based CATS-INF score effectively stratified patients with early-stage HCC into distinct prognostic groups, with the CATS-INF score showing slightly superior performance.
8.ChatGPT Predicts In-Hospital All-Cause Mortality for Sepsis: In-Context Learning with the Korean Sepsis Alliance Database
Namkee OH ; Won Chul CHA ; Jun Hyuk SEO ; Seong-Gyu CHOI ; Jong Man KIM ; Chi Ryang CHUNG ; Gee Young SUH ; Su Yeon LEE ; Dong Kyu OH ; Mi Hyeon PARK ; Chae-Man LIM ; Ryoung-Eun KO ;
Healthcare Informatics Research 2024;30(3):266-276
Objectives:
Sepsis is a leading global cause of mortality, and predicting its outcomes is vital for improving patient care. This study explored the capabilities of ChatGPT, a state-of-the-art natural language processing model, in predicting in-hospital mortality for sepsis patients.
Methods:
This study utilized data from the Korean Sepsis Alliance (KSA) database, collected between 2019 and 2021, focusing on adult intensive care unit (ICU) patients and aiming to determine whether ChatGPT could predict all-cause mortality after ICU admission at 7 and 30 days. Structured prompts enabled ChatGPT to engage in in-context learning, with the number of patient examples varying from zero to six. The predictive capabilities of ChatGPT-3.5-turbo and ChatGPT-4 were then compared against a gradient boosting model (GBM) using various performance metrics.
Results:
From the KSA database, 4,786 patients formed the 7-day mortality prediction dataset, of whom 718 died, and 4,025 patients formed the 30-day dataset, with 1,368 deaths. Age and clinical markers (e.g., Sequential Organ Failure Assessment score and lactic acid levels) showed significant differences between survivors and non-survivors in both datasets. For 7-day mortality predictions, the area under the receiver operating characteristic curve (AUROC) was 0.70–0.83 for GPT-4, 0.51–0.70 for GPT-3.5, and 0.79 for GBM. The AUROC for 30-day mortality was 0.51–0.59 for GPT-4, 0.47–0.57 for GPT-3.5, and 0.76 for GBM. Zero-shot predictions using GPT-4 for mortality from ICU admission to day 30 showed AUROCs from the mid-0.60s to 0.75 for GPT-4 and mainly from 0.47 to 0.63 for GPT-3.5.
Conclusions
GPT-4 demonstrated potential in predicting short-term in-hospital mortality, although its performance varied across different evaluation metrics.
9.Risk Factors for the Mortality of Patients With Coronavirus Disease 2019Requiring Extracorporeal Membrane Oxygenation in a Non-Centralized Setting: A Nationwide Study
Tae Wan KIM ; Won-Young KIM ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Taehwa KIM ; Hye Ju YEO ; Jin Ho JANG ; Woo Hyun CHO ; Jin-Won HUH ; Sang-Min LEE ; Chi Ryang CHUNG ; Jongmin LEE ; Jung Soo KIM ; Sung Yoon LIM ; Ae-Rin BAEK ; Jung-Wan YOO ; Ho Cheol KIM ; Eun Young CHOI ; Chul PARK ; Tae-Ok KIM ; Do Sik MOON ; Song-I LEE ; Jae Young MOON ; Sun Jung KWON ; Gil Myeong SEONG ; Won Jai JUNG ; Moon Seong BAEK ;
Journal of Korean Medical Science 2024;39(8):e75-
Background:
Limited data are available on the mortality rates of patients receiving extracorporeal membrane oxygenation (ECMO) support for coronavirus disease 2019 (COVID-19). We aimed to analyze the relationship between COVID-19 and clinical outcomes for patients receiving ECMO.
Methods:
We retrospectively investigated patients with COVID-19 pneumonia requiring ECMO in 19 hospitals across Korea from January 1, 2020 to August 31, 2021. The primary outcome was the 90-day mortality after ECMO initiation. We performed multivariate analysis using a logistic regression model to estimate the odds ratio (OR) of 90-day mortality. Survival differences were analyzed using the Kaplan–Meier (KM) method.
Results:
Of 127 patients with COVID-19 pneumonia who received ECMO, 70 patients (55.1%) died within 90 days of ECMO initiation. The median age was 64 years, and 63% of patients were male. The incidence of ECMO was increased with age but was decreased after 70 years of age. However, the survival rate was decreased linearly with age. In multivariate analysis, age (OR, 1.048; 95% confidence interval [CI], 1.010–1.089; P = 0.014) and receipt of continuous renal replacement therapy (CRRT) (OR, 3.069; 95% CI, 1.312–7.180; P = 0.010) were significantly associated with an increased risk of 90-day mortality. KM curves showed significant differences in survival between groups according to age (65 years) (log-rank P = 0.021) and receipt of CRRT (log-rank P = 0.004).
Conclusion
Older age and receipt of CRRT were associated with higher mortality rates among patients with COVID-19 who received ECMO.
10.Five-Year Overall Survival and Prognostic Factors in Patients with Lung Cancer: Results from the Korean Association of Lung Cancer Registry (KALC-R) 2015
Da Som JEON ; Ho Cheol KIM ; Se Hee KIM ; Tae-Jung KIM ; Hong Kwan KIM ; Mi Hyung MOON ; Kyongmin Sarah BECK ; Yang-Gun SUH ; Changhoon SONG ; Jin Seok AHN ; Jeong Eun LEE ; Jeong Uk LIM ; Jae Hyun JEON ; Kyu-Won JUNG ; Chi Young JUNG ; Jeong Su CHO ; Yoo-Duk CHOI ; Seung-Sik HWANG ; Chang-Min CHOI ; ;
Cancer Research and Treatment 2023;55(1):103-111
Purpose:
This study aimed to provide the clinical characteristics, prognostic factors, and 5-year relative survival rates of lung cancer diagnosed in 2015.
Materials and Methods:
The demographic risk factors of lung cancer were calculated using the KALC-R (Korean Association of Lung Cancer Registry) cohort in 2015, with survival follow-up until December 31, 2020. The 5-year relative survival rates were estimated using Ederer II methods, and the general population data used the death rate adjusted for sex and age published by the Korea Statistical Information Service from 2015 to 2020.
Results:
We enrolled 2,657 patients with lung cancer who were diagnosed in South Korea in 2015. Of all patients, 2,098 (79.0%) were diagnosed with non–small cell lung cancer (NSCLC) and 345 (13.0%) were diagnosed with small cell lung cancer (SCLC), respectively. Old age, poor performance status, and advanced clinical stage were independent risk factors for both NSCLC and SCLC. In addition, the 5-year relative survival rate declined with advanced stage in both NSCLC (82%, 59%, 16%, 10% as the stage progressed) and SCLC (16%, 4% as the stage progressed). In patients with stage IV adenocarcinoma, the 5-year relative survival rate was higher in the presence of epidermal growth factor receptor (EGFR) mutation (19% vs. 11%) or anaplastic lymphoma kinase (ALK) translocation (38% vs. 11%).
Conclusion
In this Korean nationwide survey, the 5-year relative survival rates of NSCLC were 82% at stage I, 59% at stage II, 16% at stage III, and 10% at stage IV, and the 5-year relative survival rates of SCLC were 16% in cases with limited disease, and 4% in cases with extensive disease.

Result Analysis
Print
Save
E-mail