1.Flow Void Analysis Using Different Thresholding Methods on a Choriocapillaris Optical Coherence Tomography Angiography Image Complemented with a Structural En Face Image
Young Joo LEE ; Soon-Young HWANG ; Cheolmin YUN
Korean Journal of Ophthalmology 2024;38(1):34-41
Purpose:
To investigate the flow characteristics using different thresholding methods on a choriocapillaris optical coherence tomography angiography (OCTA) image complemented with a structural En Face image.
Methods:
The 42 choriocapillaris OCTA images from healthy subjects were obtained with swept-source OCTA device and the 3 × 3-mm area OCTA images were processed with ImageJ. Using a raw choriocapillaris OCTA image and structural En Face image, we adjusted the different structural signal intensity. Then, the raw images and adjusted images were binarized with a global threshold and an auto local threshold using the Phansalkar method at 1- or 2-intercapillary distance. Then, the mean area, number, and size of the flow void, were compared among the images using different thresholding methods.
Results:
Mean flow void area, number, and size were different according to the different binarization method both in raw and adjusted images (all p < 0.001). The mean flow void area analyzed with global threshold method were well correlated with those with auto local threshold method both in raw and adjusted images (all intraclass correlations, >0.929).
Conclusions
Flow void features varied according to the different binarization methods but showed good correlation. The flow void characteristics according to the different binarization methods should be considered for the analysis of the choriocapillaris OCTA images complemented with a structural En Face image.
2.Comparison of Indocyanine Green Angiography and Optical Coherence Tomography Angiography for Polypoidal Choroidal Vasculopathy
Jonghyun KIM ; So Min AHN ; Cheolmin YUN ; Seong-Woo KIM ; Jaeryung OH
Journal of the Korean Ophthalmological Society 2021;62(9):1198-1206
Purpose:
To assess the diagnostic value of optical coherence tomography angiography (OCTA), and the factors affecting the diagnosis of polypoidal choroidal vasculopathy (PCV) by OCTA and indocyanine green angiography (ICGA).
Methods:
The numbers and area of polyps, and the presence and area of a branched vascular network (BVN) as revealed by ICGA and OCTA, were retrospectively analyzed in 43 patients with active PCV. The patients were divided into two groups according to whether the number of polyps matched between the two methods: group 1, equal number of polyps revealed by ICGA and OCTA; group 2, different number of polyps revealed by ICGA and OCTA.
Results:
In 43 PCV patients, the total number of polyps was 1.47 ± 0.83 in ICGA and 1.07 ± 0.91 in OCTA (p < 0.001), and the polyp area was 0.27 ± 0.42 mm2 in ICGA and 0.17 ± 0.15 mm2 in OCTA (p = 0.023). BVN was found in 33 eyes (76.7%) by ICGA and 29 eyes (67.4%) by OCTA (p < 0.001). The BVN area was 3.61 ± 2.59 mm2 in ICGA and 2.74 ± 2.76 mm2 in OCTA (p = 0.002). Central retinal thickness and central choroidal thickness were significantly greater in group 2 than group 1 (p < 0.001, respectively). Subretinal fluid (SRF) (p = 0.009) and subretinal hemorrhage (SRH) (p = 0.005) were significantly more prevalent in group 2 than group 1. Polyp height (p = 0.022) and diameter (p = 0.042) were significantly greater in group 2 than group 1.
Conclusions
OCTA is a supplementary diagnostic technique for detecting PCV. The presence of SRF and SHR, and large polyp height and diameter, were associated with the polyp detection rate of OCTA for PCV.
3.Comparison of Indocyanine Green Angiography and Optical Coherence Tomography Angiography for Polypoidal Choroidal Vasculopathy
Jonghyun KIM ; So Min AHN ; Cheolmin YUN ; Seong-Woo KIM ; Jaeryung OH
Journal of the Korean Ophthalmological Society 2021;62(9):1198-1206
Purpose:
To assess the diagnostic value of optical coherence tomography angiography (OCTA), and the factors affecting the diagnosis of polypoidal choroidal vasculopathy (PCV) by OCTA and indocyanine green angiography (ICGA).
Methods:
The numbers and area of polyps, and the presence and area of a branched vascular network (BVN) as revealed by ICGA and OCTA, were retrospectively analyzed in 43 patients with active PCV. The patients were divided into two groups according to whether the number of polyps matched between the two methods: group 1, equal number of polyps revealed by ICGA and OCTA; group 2, different number of polyps revealed by ICGA and OCTA.
Results:
In 43 PCV patients, the total number of polyps was 1.47 ± 0.83 in ICGA and 1.07 ± 0.91 in OCTA (p < 0.001), and the polyp area was 0.27 ± 0.42 mm2 in ICGA and 0.17 ± 0.15 mm2 in OCTA (p = 0.023). BVN was found in 33 eyes (76.7%) by ICGA and 29 eyes (67.4%) by OCTA (p < 0.001). The BVN area was 3.61 ± 2.59 mm2 in ICGA and 2.74 ± 2.76 mm2 in OCTA (p = 0.002). Central retinal thickness and central choroidal thickness were significantly greater in group 2 than group 1 (p < 0.001, respectively). Subretinal fluid (SRF) (p = 0.009) and subretinal hemorrhage (SRH) (p = 0.005) were significantly more prevalent in group 2 than group 1. Polyp height (p = 0.022) and diameter (p = 0.042) were significantly greater in group 2 than group 1.
Conclusions
OCTA is a supplementary diagnostic technique for detecting PCV. The presence of SRF and SHR, and large polyp height and diameter, were associated with the polyp detection rate of OCTA for PCV.
4.Analyses of Vessel Densities and Foveal Avascular Zones Using Four Optical Coherence Tomography Angiography Devices
Seo Yeon PARK ; Ki Tae NAM ; Cheolmin YUN ; Sungmin JANG
Journal of the Korean Ophthalmological Society 2020;61(5):482-490
Purpose:
To compare the vessel density (VD) and foveal avascular zone (FAZ) area using four different optical coherence tomography angiography (OCTA) images.
Methods:
This prospective study analyzed the OCTA images of consecutive healthy subjects using Plex-Elite (Carl Zeiss), DRI OCT-1 Atlantis (Topcon), AngioPlex (Carl Zeiss), and Spectralis OCTA (Heidelberg Engineering). The VD and FAZ areas were calculated using the OCTA images with a 3 x 3 mm2 volume scan pattern centered on the fovea.
Results:
The VD (%) of the superficial capillary plexus (SCP) and deep capillary plexus (DCP) were different using the four devices: Plex-Elite (42.17 ± 2.79, 43.71 ± 2.36), DRI OCT-1 Atlantis (28.70 ± 2.87, 30.27 ± 3.02), AngioPlex (28.32 ± 6.68, 33.33 ± 5.44), and Spectralis OCTA (27.86 ± 4.13, 28.54 ± 3.14), respectively; p < 0.001). The FAZ area (mm2) of the SCP and DCP were different using the four devices: Plex-Elite (0.276 ± 0.097, 0.340 ± 0.100), DRI OCT-1 Atlantis (0.281 ± 0.102, 0.354 ± 0.119), AngioPlex (0.269 ± 0.099, 0.422 ± 0.120), and Spectralis OCTA (0.272 ± 0.079, 0.298 ± 0.106), respectively; p < 0.001). The VD of the SCP and DCP had no significant correlation using the four devices (all, p > 0.05), but the FAZ area had positive correlations using the four devices (all, p < 0.001).
Conclusions
The four OCTA devices provided different VD and FAZ areas, so these differences should be considered in analyzing OCTA images.
5.Development of a Post-vitrectomy Injection of N-methyl-N-nitrosourea as a Localized Retinal Degeneration Rabbit Model
So Min AHN ; Jungryul AHN ; Seongkwang CHA ; Cheolmin YUN ; Tae Kwann PARK ; Yong Sook GOO ; Seong Woo KIM
Experimental Neurobiology 2019;28(1):62-73
Since genetic models for retinal degeneration (RD) in animals larger than rodents have not been firmly established to date, we sought in the present study to develop a new rabbit model of drug-induced RD. First, intravitreal injection of N-methyl-N-nitrosourea (MNU) without vitrectomy in rabbits was performed with different doses. One month after injection, morphological changes in the retinas were identified with ultra-wide-field color fundus photography (FP) and fundus autofluorescence (AF) imaging as well as spectral-domain optical coherence tomography (OCT). Notably, the degree of RD was not consistently correlated with MNU dose. Then, to check the effects of vitrectomy on MNU-induced RD, the intravitreal injection of MNU after vitrectomy in rabbits was also performed with different doses. In OCT, while there were no significant changes in the retinas for injections up to 0.1 mg (i.e., sham, 0.05 mg, and 0.1 mg), outer retinal atrophy and retinal atrophy of the whole layer were observed with MNU injections of 0.3 mg and 0.5 mg, respectively. With this outcome, 0.2 mg MNU was chosen to be injected into rabbit eyes (n=10) at two weeks after vitrectomy for further study. Six weeks after injection, morphological identification with FP, AF, OCT, and histology clearly showed localized outer RD - clearly bordered non-degenerated and degenerated outer retinal area - in all rabbits. We suggest our post-vitrectomy MNU-induced RD rabbit model could be used as an interim animal model for visual prosthetics before the transition to larger animal models.
Animals
;
Atrophy
;
Intravitreal Injections
;
Methylnitrosourea
;
Models, Animal
;
Models, Genetic
;
Photography
;
Rabbits
;
Retina
;
Retinal Degeneration
;
Retinaldehyde
;
Rodentia
;
Tomography, Optical Coherence
;
Vitrectomy
6.Generation of Retinal Progenitor Cells from Human Induced Pluripotent Stem Cell-Derived Spherical Neural Mass.
Cheolmin YUN ; Jaeryung OH ; Boram LEE ; Ja Myong LEE ; Togloom ARIUNAA ; Kuhl HUH
Tissue Engineering and Regenerative Medicine 2017;14(1):39-47
Spherical neural mass (SNM) is a mass of neural precursors that have been used to generate neuronal cells with advantages of long-term passaging capability with high yield, easy storage, and thawing. In this study, we differentiated neural retinal progenitor cells (RPCs) from human induced pluripotent stem cells (hiPSC)-derived SNMs. RPCs were differentiated from SNMs with a noggin/fibroblast growth factor-basic/Dickkopf-1/Insulin-like growth factor-1/fibroblast growth factor-9 protocol for three weeks. Human RPCs expressed eye field markers (Paired box 6) and early neural retinal markers (Ceh-10 homeodomain containing homolog), but did not photoreceptor marker (Opsin 1 short-wave-sensitive). Reverse transcription polymerase chain reaction revealed that early neural retinal markers (Mammalian achaete-scute complex homolog 1, mouse atonal homolog 5, neurogenic differentiation 1) and retinal fate markers (brain-specific homeobox/POU domain transcription factor 3B and recoverin) were upregulated, while the marker of retinal pigment epithelium (microphthalmia-associated transcription factor) only showed slight upregulation. Human RPCs were transplanted into mouse (adult 8 weeks old C57BL/6) retina. Cells transplanted into the mouse retina matured and expressed markers of mature retinal cells (Opsin 1 short-wave-sensitive) and human nuclei on immunohistochemistry three months after transplantation. Development of RPCs using SNMs may offer a fast and useful method for neural retinal cell differentiation.
Animals
;
Cell Differentiation
;
Humans*
;
Immunohistochemistry
;
Induced Pluripotent Stem Cells
;
Methods
;
Mice
;
Neurons
;
Photoreceptor Cells, Vertebrate
;
Polymerase Chain Reaction
;
Retina
;
Retinal Pigment Epithelium
;
Retinaldehyde*
;
Reverse Transcription
;
Stem Cells*
;
Transcription Factors
;
Up-Regulation
7.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
8.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
9.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.
10.Environmental disease monitoring by regional Environmental Health Centers in Korea: a narrative review
Myung-Sook PARK ; Hwan-Cheol KIM ; Woo Jin KIM ; Yun-Chul HONG ; Won-Jun CHOI ; Seock-Yeon HWANG ; Jiho LEE ; Young-Seoub HONG ; Yong-Dae KIM ; Seong-Chul HONG ; Joo Hyun SUNG ; Inchul JEONG ; Kwan LEE ; Won-Ju PARK ; Hyun-Joo BAE ; Seong-Yong YOON ; Cheolmin LEE ; Kyoung Sook JEONG ; Sanghyuk BAE ; Jinhee CHOI ; Ho-Hyun KIM
The Ewha Medical Journal 2025;48(1):e3-
This study explores the development, roles, and key initiatives of the Regional Environmental Health Centers in Korea, detailing their evolution through four distinct phases and their impact on environmental health policy and local governance. It chronicles the establishment and transformation of these centers from their inception in May 2007, through four developmental stages. Originally named Environmental Disease Research Centers, they were subsequently renamed Environmental Health Centers following legislative changes. The analysis includes the expansion in the number of centers, the transfer of responsibilities to local governments, and the launch of significant projects such as the Korean Children’s Environmental Health Study (Ko-CHENS ). During the initial phase (May 2007–February 2009), the 10 centers concentrated on research-driven activities, shifting from a media-centered to a receptor-centered approach. In the second phase, prompted by the enactment of the Environmental Health Act, six additional centers were established, broadening their scope to address national environmental health issues. The third phase introduced Ko-CHENS, a 20-year national cohort project designed to influence environmental health policy by integrating research findings into policy frameworks. The fourth phase marked a decentralization of authority, empowering local governments and redefining the centers' roles to focus on regional environmental health challenges. The Regional Environmental Health Centers have significantly evolved and now play a crucial role in addressing local environmental health issues and supporting local government policies. Their capacity to adapt and respond to region-specific challenges is essential for the effective implementation of environmental health policies, reflecting geographical, socioeconomic, and demographic differences.