1.Effects and mechanism of ultra-high dose rate irradiation in reducing radiation damage to zebrafish embryos
Hui LUO ; Leijie MA ; Ronghu MAO ; Na LI ; Fumin XUE ; Xuenan WANG ; Hongchang LEI ; Shuai SONG ; Hong GE ; Chengliang YANG
Chinese Journal of Radiological Medicine and Protection 2024;44(3):174-180
Objective:To conduct a comparative analysis of the radiation damage to zebrafish embryos and the associated biological mechanism after ultra-high dose rate (FLASH) and conventional dose rate irradiation.Methods:Zebrafish embryos at 4 h post-fertilization were exposed to conventional and FLASH irradiation (9 MeV electron beam). The mortality and hatchability of zebrafish after radiation exposure were recorded. Larvae at 96 h post-irradiation underwent morphological scoring, testing of reactive oxygen species (ROS) levels, and analysis of changes in oxidative stress indicators.Results:Electron beam irradiation at doses of 2-12 Gy exerted subtle effects on the mortality and hatchability of zebrafish embryos. However, single high-dose irradiation (≥ 6 Gy) could lead to developmental malformation of larvae, with conventional irradiation showing the most significant effects ( t = 0.87-9.75, P < 0.05). In contrast, after FLASH irradiation (≥ 6 Gy), the ROS levels in zebrafish and its oxidative stress indicators including superoxide dismutase (SOD), catalase (CAT), and malondialdehyde (MDA) were significantly reduced ( t = 0.42-15.19, P < 0.05). There was no statistically significant difference in ROS levels in incubating solutions after conventional and FLASH irradiation ( P > 0.05). Conclusions:Compared to conventional irradiation, FLASH irradiation can reduce radiation damage to zebrafish embryos, and this is in a dose-dependent manner. The two irradiation modes lead to different oxidative stress levels in zebrafish, which might be a significant factor in the reduction of radiation damage with FLASH irradiation.
2.Research advances in FLASH radiotherapy-related clinical trials
Hui LUO ; Yichen MA ; Leijie MA ; Ronghu MAO ; Hongchang LEI ; Han LIU ; Yanping ZHANG ; Meng XU ; Hong GE ; Chengliang YANG
Chinese Journal of Radiological Medicine and Protection 2024;44(10):891-895
FLASH radiotherapy (FLASH-RT) has garnered considerable attention globally in recent years. Compared to conventional radiotherapy, FLASH-RT can deliver the total radiation dose to the target volume in an extremely short time, reducing the radiation-induced damage to normal tissue while maintaining similar anti-tumor effects. FLASH-RT has been in the clinical trial stage, with several clinical research result being reported. Based on the collected global clinical research result of FLASH-RT in recent years, this study systematically reviewed FLASH-RT′s safety, radiation-related side effects, treatment efficacy, opportunities, and challenges in clinical trials.
3.Radiation chemistry effects on water molecules after ultra-high dose rate irradiation
Hui LUO ; Phyllis ZHANG ; Nan LI ; Ke CHOU ; Chengliang YANG ; Leijie MA ; Hongchang LEI ; Ronghu MAO ; Shuai SONG ; Hong GE
Chinese Journal of Radiological Medicine and Protection 2023;43(11):900-905
Objective:To compare the radiation chemistry effects on water molecules after ultra-high dose rate (FLASH) and conventional irradiation.Methods:Both FLASH and conventional irradiation were applied to ultrapure water, with the hydroxyl radical yield in the homogeneous phase detected using electron paramagnetic resonance (EPR) and the hydrogen peroxide (H 2O 2) yield in the diffusion phase analyzed uuxing fluorescence probe. The liposome model was then established to investigate the radiation chemistry effect of FLASH and conventional irradiation in inducing lipid peroxidation. Results:Radiation chemistry reactions were observed in water molecules after irradiation. In the homogeneous phase, the yield of free radicals using FLASH irradiation is similar to those from conventional irradiation ( P>0.05). In the diffusion phase, the amount of H 2O 2 produced by FLASH irradiation was significantly lower than those from conventional irradiation ( t=0.49-12.81, P<0.05). The liposome model confirmed that conventional irradiation could significantly induce lipid peroxidation through the radiation chemistry effect in water molecules as compared with FLASH irradiation ( t=0.31-11.73, P<0.05). Conclusions:The radiation chemistry effect in water molecules after FLASH irradiation was significantly lower than that from conventional irradiation. This could be one of the mechanisms of FLASH effect.
4.Effect of respiratory motion on radiation dose to the margin of target volume in stereotactic body radiotherapy for lung cancer
Lingling TIAN ; Ronghu MAO ; Dingjie LI ; Chengliang YANG ; Lijie JIA ; Hong GE
Chinese Journal of Radiation Oncology 2017;26(12):1426-1429
Objective To investigate the effect of respiratory motion on inadvertent irradiation dose (ⅡD)to the microscopic disease(MD)and expanding margin of target volume in stereotactic body radiotherapy for lung cancer. Methods Based on the pattern of respiration-induced tumor motion during lung radiotherapy, a probability model of MD entry into or exit from internal target volume(ITV)was established and the theoretical dose to MD was calculated according to the static dose distribution by four-dimensional computed tomography. The experimental dose to MD during respiratory motion was measured using a respiration simulation phantom and optically stimulated luminescence(OSL)and then compared with the theoretical value for model validation.Results For the target volume in periodic motion,the deviation of the theoretical dose to MD from the experimental value measured by OSL was less than 5%. A 10-mm margin around ITV received a biological dose higher than 80 Gy. Conclusions The dose model established in this study can accurately predict the irradiation dose to MD in the target volume in periodic motion. Respiratory motion increases ⅡD to MD and there is no need to expand clinical target volume.
5.The clinical analysis of stereotactic ablative radiotherapy for stage Ⅰ peripheral non-small cell lung cancers
Chengliang YANG ; Ke YE ; Huiyun ZHAO ; Ronghu MAO ; Jinming YU ; Hong GE
Journal of Chinese Physician 2016;18(5):643-646,652
Objective To investigate the efficacy and toxicity of stereotactic ablative radiotherapy for stage Ⅰ peripheral non-small cell lung cancers.Methods Thirty six patients of stage Ⅰ peripheral non-small cell lung cancers were treated with stereotactic ablative radiotherapy.The prescription dose was 12 Gy per fraction ×4 fraction in one to two weeks.The 100% planning target volume (PTV) was covered by the isodose curve of 95% prescription dose.Organs at risk and their respective tolerance doses used during treatment planning were developed from the research scheme of the Radiation Therapy Oncology Group 0236.Before the radiation delivery,all patients were scanned by the fan beam CT or the cone beam CT for image guidance and registration.The follow-up for the patients was given to observe the toxicity and efficacy of stereotactic ablative radiotherapy (SABR).Results The median follow-up time was 18.7 months (range of 4 to 36 months).After treatment,the overall response rate was 88.9%,with complete response (CR) 17 cases(47.2%),partial response (PR) 15 cases(41.7%),and stable disease (SD) 4 cases(11.1%).The estimated overall survival rate at 1 and 3 years was 92.3% (95% confidence interval [CI],86.3% ~97.1%) and 85.3% (95% CI,80.5% ~90.6%).The estimated local control rate at 3 years was 90.2% (95% CI,85.7% ~94.8%).There was no gradeⅢ or above toxicity related to treatment.Conclusions The stereotactic ablative radiotherapy attains good local control and survival efficacy for the stage Ⅰ peripheral non-small lung cancer patients.It is well tolerated owing to low toxicity.
6.Factors affecting oculomotor nerve function recovery time following balloon embolization for oculomotor nerve palsy caused by traumatic carotid cavernous sinus fistula.
Congying ZHENG ; Hang SHU ; Kai TANG ; Shaojian ZENG ; Chengliang MAO
Journal of Southern Medical University 2015;35(2):244-247
OBJECTIVETo analyze the factors that affect oculomotor nerve function recovery time in patients receiving balloon embolization for oculomotor nerve palsy caused by traumatic carotid cavernous sinus fistula.
METHODSThe clinical data were collected from 87 patients undergoing balloon embolization for oculomotor nerve palsy due to traumatic carotid cavernous sinus fistula from July 2005 to July 2013 and the factors affecting oculomotor nerve function recovery time was analyzed using a self-made questionnaire.
RESULTS AND CONLUSIONOculomotor nerve function recovery time ranged from 1 to 6 months (mean 33.32 ± 16.76 days) in these patients. Age, severity of preoperative oculomotor nerve paralysis, injury-to-treatment time, and number of balloon used were positively correlated with nerve function recovery time, and the flow volume of traumatic carotid cavernous sinus fistula was negatively correlated with the recovery time.
Balloon Occlusion ; Carotid-Cavernous Sinus Fistula ; Humans ; Oculomotor Nerve ; physiopathology ; Oculomotor Nerve Diseases ; physiopathology ; Recovery of Function
7.Factors affecting oculomotor nerve function recovery time following balloon embolization for oculomotor nerve palsy caused by traumatic carotid cavernous sinus fistula
Congying ZHENG ; Hang SHU ; Kai TANG ; Shaojian ZENG ; Chengliang MAO
Journal of Southern Medical University 2015;(2):244-247
Objective To analyze the factors that affect oculomotor nerve function recovery time in patients receiving balloon embolization for oculomotor nerve palsy caused by traumatic carotid cavernous sinus fistula. Methods The clinical data were collected from 87 patients undergoing balloon embolization for oculomotor nerve palsy due to traumatic carotid cavernous sinus fistula from July 2005 to July 2013 and the factors affecting oculomotor nerve function recovery time was analyzed using a self-made questionnaire. Results and Conclusion Oculomotor nerve function recovery time ranged from 1 to 6 months (mean 33.32 ± 16.76 days) in these patients. Age, severity of preoperative oculomotor nerve paralysis, injury-to-treatment time, and number of balloon used were positively correlated with nerve function recovery time, and the flow volume of traumatic carotid cavernous sinus fistula was negatively correlated with the recovery time.
8.Factors affecting oculomotor nerve function recovery time following balloon embolization for oculomotor nerve palsy caused by traumatic carotid cavernous sinus fistula
Congying ZHENG ; Hang SHU ; Kai TANG ; Shaojian ZENG ; Chengliang MAO
Journal of Southern Medical University 2015;(2):244-247
Objective To analyze the factors that affect oculomotor nerve function recovery time in patients receiving balloon embolization for oculomotor nerve palsy caused by traumatic carotid cavernous sinus fistula. Methods The clinical data were collected from 87 patients undergoing balloon embolization for oculomotor nerve palsy due to traumatic carotid cavernous sinus fistula from July 2005 to July 2013 and the factors affecting oculomotor nerve function recovery time was analyzed using a self-made questionnaire. Results and Conclusion Oculomotor nerve function recovery time ranged from 1 to 6 months (mean 33.32 ± 16.76 days) in these patients. Age, severity of preoperative oculomotor nerve paralysis, injury-to-treatment time, and number of balloon used were positively correlated with nerve function recovery time, and the flow volume of traumatic carotid cavernous sinus fistula was negatively correlated with the recovery time.
9.Application of CT image-guided technology in radiotherapy of the mid-and upper-thoracic esophageal carcinoma
Dingjie LI ; Hui WU ; Ronghu MAO ; Chengliang YANG ; Hongchang LEI ; Jianhua WANG
Chinese Journal of Radiological Medicine and Protection 2013;33(6):623-625
Objective To compare the clinical target volume (CTV) expanding margins in the mid-and upper-thoracic esophageal carcinoma during radiotherapy measured with and without online image guidance technique by CT on rail.Methods 100 patients with mid-and upper-thoracic esophageal carcinoma undergoing intensity modulated radiotherapy received CT scanning.Image registration was conducted between the scanning results and the planned CT images,thus set-up error data were acquired and got on-line correction.Fifty patients were randomly selected to undergo additional post-treatment CT scanningso as to analyze the revised residuals,displacement during treatment,and infra-fraction GTV shifts.Results Compared to the radiotherapy without CT-based image guidance,the CTV expanding margins obtained with CT-based image guidance was reduced significantly from 9.1,8.8 and 6.1 mm to 4.1,4.5 and 4.3 mm in the left-right,head-feet,and belly-back directions respectively.Conclusions The on-line image-guided technology significantly improves the accuracy of target and reduces the CTV expanding margins.
10.Evaluation of the accuracy of CTVision image-guided stereotactic body radiation therapy for non-small cell lung cancer
Xiaoli ZHENG ; Ke YE ; Ronghu MAO ; Chengliang YANG ; Chongya ZHAI ; Rongliang QIU ; Hong GE
Chinese Journal of Radiation Oncology 2013;22(6):485-488
Objective To investigate the accuracy of CTVision image-guided stereotactic body radiation therapy (SBRT) for non-small cell lung cancer (NSCLC).Methods 10 lung SBRT patients were imaged with CTVision before and after irradiation for acquiring and analyzing the three-dimensional set-up error data sets in our department from October 2010 to May 2012.Gross tumor volumes (GTVs) were contoured on pre-and post-SBRT CT sets and combined for generating internal gross tumor volumes (IGTVs).Planning target volume (PTV) margin was calculated,and IGTVs and PTVs were compared for off-line verification of accuracy of SBRT.A paired t-test statistical analysis was conducted with the datasets using SPSS 17.0.Results 80 CT image sets were totally obtained.Setup errors was significant difference before and after radiotherapy in the left-right,superior-inferior and anterior-posterior directions,that were (-0.10±1.30) mmand (-0.15±1.31) mm (P=0.720),(0.18±1.32) mm and (0.18±1.43) mm (P =1.000) and (-0.08 ± 1.19) mm and (-0.13 ± 1.18) mm (P =0.750),respectively.IGTVs of ten patients were smaller than corresponding PTVs (13.53 cm3 and 37.84 cm3,P =0.000).Conclusion Accuracy and safety of SBRT could be verified by imaging with CTVision before and after delivery for non-small cell lung cancer.

Result Analysis
Print
Save
E-mail