1.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
2.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
3.Integrated molecular characterization of sarcomatoid hepatocellular carcinoma
Rong-Qi SUN ; Yu-Hang YE ; Ye XU ; Bo WANG ; Si-Yuan PAN ; Ning LI ; Long CHEN ; Jing-Yue PAN ; Zhi-Qiang HU ; Jia FAN ; Zheng-Jun ZHOU ; Jian ZHOU ; Cheng-Li SONG ; Shao-Lai ZHOU
Clinical and Molecular Hepatology 2025;31(2):426-444
Background:
s/Aims: Sarcomatoid hepatocellular carcinoma (HCC) is a rare histological subtype of HCC characterized by extremely poor prognosis; however, its molecular characterization has not been elucidated.
Methods:
In this study, we conducted an integrated multiomics study of whole-exome sequencing, RNA-seq, spatial transcriptome, and immunohistochemical analyses of 28 paired sarcomatoid tumor components and conventional HCC components from 10 patients with sarcomatoid HCC, in order to identify frequently altered genes, infer the tumor subclonal architectures, track the genomic evolution, and delineate the transcriptional characteristics of sarcomatoid HCCs.
Results:
Our results showed that the sarcomatoid HCCs had poor prognosis. The sarcomatoid tumor components and the conventional HCC components were derived from common ancestors, mostly accessing similar mutational processes. Clonal phylogenies demonstrated branched tumor evolution during sarcomatoid HCC development and progression. TP53 mutation commonly occurred at tumor initiation, whereas ARID2 mutation often occurred later. Transcriptome analyses revealed the epithelial–mesenchymal transition (EMT) and hypoxic phenotype in sarcomatoid tumor components, which were confirmed by immunohistochemical staining. Moreover, we identified ARID2 mutations in 70% (7/10) of patients with sarcomatoid HCC but only 1–5% of patients with non-sarcomatoid HCC. Biofunctional investigations revealed that inactivating mutation of ARID2 contributes to HCC growth and metastasis and induces EMT in a hypoxic microenvironment.
Conclusions
We offer a comprehensive description of the molecular basis for sarcomatoid HCC, and identify genomic alteration (ARID2 mutation) together with the tumor microenvironment (hypoxic microenvironment), that may contribute to the formation of the sarcomatoid tumor component through EMT, leading to sarcomatoid HCC development and progression.
4.Single-cell RNA sequencing reveals Shen-Bai-Jie-Du decoction retards colorectal tumorigenesis by regulating the TMEM131-TNF signaling pathway-mediated differentiation of immunosuppressive dendritic cells.
Yuquan TAO ; Yinuo MA ; Limei GU ; Ye ZHANG ; Qinchang ZHANG ; Lisha ZHOU ; Jie PAN ; Meng SHEN ; Xuefei ZHUANG ; Linmei PAN ; Weixing SHEN ; Chengtao YU ; Dan DONG ; Dong ZHANG ; Tingsheng LING ; Yang SUN ; Haibo CHENG
Acta Pharmaceutica Sinica B 2025;15(7):3545-3560
Colorectal tumorigenesis generally progresses from adenoma to adenocarcinoma, accompanied by dynamic changes in the tumor microenvironment (TME). A randomized controlled trial has confirmed the efficacy and safety of Shen-Bai-Jie-Du decoction (SBJDD) in preventing colorectal tumorigenesis. However, the mechanism remains unclear. In this study, we employed single-cell RNA sequencing (scRNA-seq) to investigate the dynamic evolution of the TME and validated cell infiltration with multiplex immunohistochemistry and flow cytometry. Bulk RNA sequencing was utilized to assess the underlying mechanisms. Our results constructed the mutually verifiable single-cell transcriptomic atlases in Apc Min/+ mice and clinical patients. There was a marked accumulation of CCL22+ dendritic cells (DCs) and an enhanced immunosuppressive action, which SBJDD and berberine reversed. Combined treatment with cholesterol and lipopolysaccharide induced characteristic gene expression of CCL22+ DCs, which may represent "exhausted DCs". Intraperitoneal injection of these DCs after SBJDD treatment eliminated its therapeutic effects. TMEM131 derived CCL22+ DCs generation by TNF signaling pathway and may be a potential target of berberine in retarding colorectal tumorigenesis. These findings emphasize the role of exhausted DCs and the regulatory mechanisms of SBJDD and berberine in colorectal cancer (CRC), suggesting that the multi-component properties of SBJDD may help restore TME homeostasis and offer novel cancer therapy.
5.Design and inflammation-targeting efficiency assessment of an engineered liposome-based nanomedicine delivery system targeting E-selectin.
Yumeng YE ; Bo YU ; Shasha LU ; Yu ZHOU ; Meihong DING ; Guilin CHENG
Journal of Southern Medical University 2025;45(5):1013-1022
OBJECTIVES:
To develop an E-selectin-targeting nanomedicine delivery system that competitively inhibits E-selectin-neutrophil ligand binding to block neutrophil adhesion to vessels and suppress their recruitment to the lesion sites.
METHODS:
Doxorubicin hydrochloride (DOX)-loaded liposomes (IEL-Lip/DOX) conjugated with E-selectin-affinity peptide IELLQARC were developed using a post-insertion method. Two formulations [2-1P: Mol(PC): Mol(DPI)=100:1; 2-3P: 100:3] were prepared and their modification density and in vitro release characteristics were determined. Their targeting efficacy was assessed in a cell model of LPS-induced inflammation, a mouse model of acute lung injury (ALI), a rat femoral artery model of physical injury-induced inflammation, and a zebrafish model of local inflammation.
RESULTS:
The prepared IEL-Lip/DOX 2-1P and 2-3P had peptide modification densities of 4.76 and 7.57 pmoL/cm2, respectively. Compared with unmodified liposomes, IEL-Lip/DOX exhibited significantly reduced 48-h cumulative release rates at pH 5.5. In the inflammation cell model, IEL-Lip/DOX showed increased uptake by activated inflammatory endothelial cells, and 2-1P exhibited a higher trans-endothelial ability. In ALI mice, the fluorescence intensity of IEL-Lip/Cy5.5 increased significantly in lung tissues by 53.71% [Z-(2-1P)] and 93.41% [Z-(2-3P)], and 2-1P had an increased distribution by 24.19% in the inflammatory lung tissue compared to normal mouse lung tissue. In rat femoral artery models, 2-1P had greater injured/normal vessel fluorescence intensity contrast. In the zebrafish models, both 2-1P and 2-3P showed increased aggregation at the site of inflammation.
CONCLUSIONS
This E-selectin-targeting nanomedicine delivery system efficiently targets activated inflammatory endothelial cells to increase drug concentration at the inflammatory site, which sheds light on new strategies for treating neutrophil-mediated inflammatory diseases and practicing the concept of "one drug for multiple diseases".
Animals
;
Liposomes
;
Rats
;
Nanomedicine
;
E-Selectin
;
Drug Delivery Systems
;
Inflammation/drug therapy*
;
Mice
;
Doxorubicin/analogs & derivatives*
;
Zebrafish
;
Acute Lung Injury/drug therapy*
6.Trace component fishing strategy based on offline two-dimensional liquid chromatography combined with PRDX3-surface plasmon resonance for Uncaria alkaloids.
Hui NI ; Zijia ZHANG ; Ye LU ; Yaowen LIU ; Yang ZHOU ; Wenyong WU ; Xinqin KONG ; Liling SHEN ; Sihan CHEN ; Huali LONG ; Cheng LUO ; Hao ZHANG ; Jinjun HOU ; Wanying WU
Journal of Pharmaceutical Analysis 2025;15(9):101244-101244
The rapid screening of bioactive constituents within traditional Chinese medicine (TCM) presents a significant challenge to researchers. Prevailing strategies for the screening of active components in TCM often overlook trace components owing to their concealment by more abundant constituents. To address this limitation, a fishing strategy based on offline two-dimensional liquid chromatography (2D-LC) combined with surface plasmon resonance (SPR) was utilized to screen bioactive trace components targeting peroxiredoxin 3 (PRDX3), using Uncaria alkaloids (UAs) as a case study. Initially, an orthogonal preparative offline 2D-LC system combining a positively charged C18 column and a conventional C18 column under disparate mobile phase conditions was constructed. To fully reveal the trace alkaloids, 13 2D fractions of UAs were prepared, and their components were characterized using mass spectrometry (MS). Subsequently, employing PRDX3 as the targeting protein, a SPR-based screening approach was established and rigorously validated with geissoschizine methyl ether (GSM) serving as a positive control for binding. Employing this refined strategy, 29 candidate binding alkaloids were fished from the 13 2D fractions. Notably, combining offline 2D-LC with SPR increased the yield of candidate binding components from 10 to 29 when compared to SPR-based screening alone. Subsequent binding affinity assays confirmed that PRDX3 was a direct binding target for the 12 fished alkaloids, with isovallesiachotamine (IV), corynoxeine N-oxide (CO-N), and cadambine (CAD) demonstrating the highest affinity for PRDX3. Their interactions were further validated through molecular docking analysis. Subsequent intracellular H2O2 measurement assays and transfection experiments confirmed that these three trace alkaloids enhanced PRDX3-mediated H2O2 clearance. In conclusion, this study introduced an innovative strategy for the identification of active trace components in TCM. This approach holds promise for accelerating research on medicinal components within this field.
7.Investigating the Mechanistic Insights of Limonene's Anti-non-small Cell Lung Cancer Effect Through Metabolomics Analysis
Huamin ZHANG ; Longhui CHENG ; Xueman DONG ; Lu YE ; Yuxin XU ; Lin CHEN ; Pu WU ; Jianliang ZHOU
Chinese Journal of Modern Applied Pharmacy 2024;41(2):192-202
OBJECTIVE
To elucidate the mechanisms responsible for the inhibitory effects of limonene on the proliferation of non-small cell lung cancer(NSCLC) by non-targeted metabolomics and additional approaches.
METHODS
The CCK-8 assay was utilized to evaluate the inhibitory effects of limonene on NSCLC A549 cell viability and to ascertain the IC50. In vitro experiments, encompassing colony formation, flow cytometry, iron content assessment, and mitochondrial staining, were conducted to assess the anti-lung cancer and iron-induced cell death effects of limonene. Metabolomic analysis was employed to identify potential pathways influenced by limonene, and Western blotting was carried out to validate pivotal proteins within these pathways.
RESULTS
In comparison to the control group, the limonene-treated group demonstrated a significant, dose-dependent reduction in A549 cell proliferation and colony formation. Optical microscopy revealed cellular detachment and pronounced changes in cellular morphology following exposure to limonene. Limonene induced apoptosis in A549 cells and arrested them in the G0-G1 phase of the cell cycle. Confocal microscopy unveiled diminished mitochondrial fluorescence and an augmented intracellular iron content, indicative of the classical phenomenon of ferroptosis. Metabolomic investigations unveiled divergent metabolic pathways, including glutathione(GSH) metabolism, arginine biosynthesis, D-glutamine and D-glutamate metabolism, as well as cysteine and methionine metabolism, with many of them intricately linked to intracellular GSH synthesis. Western blotting experiments underscored a marked reduction in the levels of SLC40A1, SLC7A11(xCT), and GPX4 proteins within the cells post-limonene treatment.
CONCLUSION
Limonene may induce ferroptosis in lung cancer cells by reducing GSH synthesis and increasing Fe2+ levels.
8.Summary of the Academic Thought of TCM Master Zhou Zhongying on Integrating the Ancient and Modern to Create a New System of Pathogenesis Theory
Fang YE ; Mianhua WU ; Xueping ZHOU ; Haibo CHENG ; Liu LI ; Zhe FENG ; Lu JIN ; Yao ZHU ; Lizhong GUO ; Zhiqiang ZHAO ; Zhiying WANG ; Miaowen JIN
Journal of Nanjing University of Traditional Chinese Medicine 2024;40(10):1071-1079
This paper summarizes the exploration process and academic significance of the academic thought of Zhou Zhongying,a master of traditional Chinese medicine,who took the creation of a new system of TCM pathogenesis theory as the core,and interprets its theoretical connotation.As a pioneer in the construction of higher education textbooks for traditional Chinese medicine,Professor Zhou Zhongying created the outline of TCM internal medicine viscera differentiation,persisted in carrying out innovative research on patho-genesis theory,achieved fruitful academic results,and enriched and developed the academic system of TCM theory.In the clinical di-agnosis and treatment of exogenous febrile diseases and acute and difficult internal injuries,he systematically created new pathogenesis theories such as stasis-heat theory and cancer toxicity theory.Based on this,the legislation of medication can improve the clinical effi-cacy,and it is realized that identifying the pathogenesis is the key link in syndrome differentiation and treatment.In his later years,Professor Zhou Zhongying,guided by the holistic view,proposed the"thirteen pathogenesis"and constructed a new system of TCM pathogenesis differentiation,highlighting the guiding value of complex pathogenesis and the causal chain of pathogenesis elements to complex clinical diseases and syndromes,forming a theory with the idea of"examining syndromes and seeking pathogenesis,activating syndrome differentiation"as its soul.This theory breaks through the rigid thinking of syndrome differentiation and treatment based on a single pathogenesis or fixed syndrome type,reconstructs the theoretical framework of TCM with the idea of holistic view,and is a major academic innovation in modern TCM.
9.Experts consensus on standard items of the cohort construction and quality control of temporomandibular joint diseases (2024)
Min HU ; Chi YANG ; Huawei LIU ; Haixia LU ; Chen YAO ; Qiufei XIE ; Yongjin CHEN ; Kaiyuan FU ; Bing FANG ; Songsong ZHU ; Qing ZHOU ; Zhiye CHEN ; Yaomin ZHU ; Qingbin ZHANG ; Ying YAN ; Xing LONG ; Zhiyong LI ; Yehua GAN ; Shibin YU ; Yuxing BAI ; Yi ZHANG ; Yanyi WANG ; Jie LEI ; Yong CHENG ; Changkui LIU ; Ye CAO ; Dongmei HE ; Ning WEN ; Shanyong ZHANG ; Minjie CHEN ; Guoliang JIAO ; Xinhua LIU ; Hua JIANG ; Yang HE ; Pei SHEN ; Haitao HUANG ; Yongfeng LI ; Jisi ZHENG ; Jing GUO ; Lisheng ZHAO ; Laiqing XU
Chinese Journal of Stomatology 2024;59(10):977-987
Temporomandibular joint (TMJ) diseases are common clinical conditions. The number of patients with TMJ diseases is large, and the etiology, epidemiology, disease spectrum, and treatment of the disease remain controversial and unknown. To understand and master the current situation of the occurrence, development and prevention of TMJ diseases, as well as to identify the patterns in etiology, incidence, drug sensitivity, and prognosis is crucial for alleviating patients′suffering.This will facilitate in-depth medical research, effective disease prevention measures, and the formulation of corresponding health policies. Cohort construction and research has an irreplaceable role in precise disease prevention and significant improvement in diagnosis and treatment levels. Large-scale cohort studies are needed to explore the relationship between potential risk factors and outcomes of TMJ diseases, and to observe disease prognoses through long-term follw-ups. The consensus aims to establish a standard conceptual frame work for a cohort study on patients with TMJ disease while providing ideas for cohort data standards to this condition. TMJ disease cohort data consists of both common data standards applicable to all specific disease cohorts as well as disease-specific data standards. Common data were available for each specific disease cohort. By integrating different cohort research resources, standard problems or study variables can be unified. Long-term follow-up can be performed using consistent definitions and criteria across different projects for better core data collection. It is hoped that this consensus will be facilitate the development cohort studies of TMJ diseases.
10.Role of O-sialoglycoprotein endopeptidase in hepatic ischemia-reperfusion injury in mice: relationship with oxidative stress
Tengjuan ZHANG ; Wanqing ZHOU ; Cheng CHEN ; Qian ZHANG ; Yanfei ZHAO ; Dehao HE ; Zhi YE ; Pingping XIA
Chinese Journal of Anesthesiology 2024;44(1):85-90
Objective:To evaluate the role of O-sialoglycoprotein endopeptidase (OSGEP) in hepatic ischemia-reperfusion injury (HIRI) and the relationship with oxidative stress in mice.Methods:Experiment Ⅰ Twenty-four SPF healthy male C57BL/6 mice, 12 wild-type and 12 OSGEP knockdown, aged 6-8 weeks, weighing 18-22 g, were divided into 4 groups ( n=6 each) by the random number table method: wild-type shamoperation group (Sham group), wild-type HIRI group (HIRI group), OSGEP knockdown+ sham operation group (Sham+ KD group) and OSGEP knockdown+ HIRI group (HIRI+ KD group). Ischemia-reperfusion model was prepared by blocking the hepatic artery and portal vein for 60 min followed by reperfusion in anesthetized animals, the blood vessels were only exposed without occlusion in Sham group and Sham+ KD group, and the blood vessels were clamped for 60 min followed by reperfusion in HIRI group and HIRI+ KD group. The mice were sacrificed after 6-h reperfusion to extract liver tissue samples for microscopic examination of histopathological changes (with an optical microscope after HE staining) which were evaluated using Suzuki score and for determination of the serum concentrations of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), level of reactive oxygen species (ROS) (using the DCFH-DA fluorescent probe method), contents of malondialdehyde (MDA) and glutathione(GSH) in liver tissues (using a colorimetric method) and expression of OSGEP (using Western blot). Experiment Ⅱ The well-growing AML12 cells were divided into 4 groups ( n=30 each) using a random number table method: control group (C group), oxygen-glucose deprivation/restoration (OGD/R) group, OGD/R+ OSGEP knockdown group (OGD/R+ KD group), and OGD/R+ OSGEP knockdown negative control group (OGD/R+ NC group). Group C was cultured under normal conditions. Group OGD/R was subjected to O 2-glucose deprivation for 6 h followed by restoration of O 2-glucose supply for 24 h in OGD/R group. In OGD/R+ KD group, stable transfection of AML12 cells with OSGEP knockdown was performed prior to the experiment, and the other procedures were the same as those previously described. The cell survival rate was measured by the CCK-8 assay, the release of lactate dehydrogenase (LDH) was measured, the DCFH-DA method was used to detect the levels of ROS, and the contents of MDA and GSH were determined using a colorimetric method. Results:Experiment Ⅰ Compared with Sham group, the expression of OSGEP was significantly down-regulated, the serum concentrations of AST and ALT, Suzuki score, levels of ROS and content of MDA were increased, and the GSH content was decreased in HIRI group ( P<0.05), and no significant change was found in each parameter in Sham+ KD group ( P>0.05). Compared with HIRI group, the serum concentrations of AST and ALT, Suzuki score, levels of ROS and content of MDA were significantly increased, and the GSH content was decreased in HIRI+ KD group ( P<0.05). Experiment Ⅱ Compared with group C, the expression of OSGEP was significantly down-regulated, the cell survival rate and GSH content were decreased, and the release of LDH, levels of ROS and content of MDA were increased in group OGD/R ( P<0.05). Compared with OGD/R group, the cell survival rate and GSH content were significantly decreased, and the release of LDH, levels of ROS and content of MDA were increased in OGD/R+ KD group ( P<0.05), and no significant change was found in each parameter in OGD/R+ NC group ( P>0.05). Conclusions:OSGEP plays an endogenous protective role in HIRI by inhibiting oxidative stress in mice.


Result Analysis
Print
Save
E-mail