1.Pathological laughing with syncope and occipital hypoperfusion as an unusual late effect of pontine infarct
Neurology Asia 2010;15(2):179-183
Occipital lobes are not usually implicated in the current proposed pathways of pathological laughter.
We present a case of occasional pathological laughter associated with pontine infarct. Brain SPECT
revealed hypoperfusion of bilateral occipital lobes in addition to an underlying abnormal regulation
of the cortico-pontine-cerebellar pathway. The cause of bilateral occipital hypoperfusion was thought
to be due to vertebrobasilar stenosis in our patient. The co-existence of bilateral occipital lobe
hypoperfusion in our patient suggest that occipital lobes may also be involved in the generation of
pathological laughter.
2.Altered Auditory P300 Performance in Parents with Attention Deficit Hyperactivity Disorder Offspring
Mei Hung CHI ; Ching Lin CHU ; I Hui LEE ; Yi Ting HSIEH ; Ko Chin CHEN ; Po See CHEN ; Yen Kuang YANG
Clinical Psychopharmacology and Neuroscience 2019;17(4):509-516
OBJECTIVE: Altered event-related potential (ERP) performances have been noted in attention deficit hyperactivity disorder (ADHD) patients and reflect neurocognitive dysfunction. Whether these ERP alterations and correlated dysfunctions exist in healthy parents with ADHD offspring is worth exploring. METHODS: Thirteen healthy parents with ADHD offspring and thirteen healthy controls matched for age, sex and years of education were recruited. The auditory oddball paradigm was used to evaluate the P300 wave complex of the ERP, and the Wechsler Adult Intelligence Scale-Revised, Wisconsin Card Sorting Test, and continuous performance test were used to measure neurocognitive performance. RESULTS: Healthy parents with ADHD offspring had significantly longer auditory P300 latency at Fz than control group. However, no significant differences were found in cognitive performance. CONCLUSION: The presence of a subtle alteration in electro-neurophysiological activity without explicit neurocognitive dysfunction suggests potential candidate of biological marker for parents with ADHD offspring.
Adult
;
Attention Deficit Disorder with Hyperactivity
;
Biomarkers
;
Cognition
;
Education
;
Evoked Potentials
;
Humans
;
Intelligence
;
Parents
;
Wisconsin
3.Association between IPTA Gene Polymorphisms and Hematological Abnormalities in Hepatitis C Virus-Infected Patients Receiving Combination Therapy.
Jow Jyh HWANG ; Ching Chu LO ; Chien Hung LIN ; Hsu Sheng CHENG ; I Wen HUNG ; Wan Ju TSAI ; Chien Hui HUNG
Gut and Liver 2015;9(2):214-223
BACKGROUND/AIMS: Hematological abnormalities during hepatitis C virus (HCV) combination therapy with pegylated interferon alpha and ribavirin often necessitate dose reduction. Variants of the ITPA gene have been reported to protect against anemia during the early stages of HCV combination treatments but have also been associated with larger decreases in platelet counts. We aimed to identify the association between specific ITPA gene polymorphisms and hematological abnormalities in patients undergoing HCV combination therapy. METHODS: In this retrospective study, 175 patients treated with HCV combination therapy were enrolled at St. Martin De Porres Hospital in Taiwan between 2006 and 2012. Two single nucleotide polymorphisms (SNP) within or adjacent to the ITPA gene (rs1127354, rs6051702) were genotyped. We investigated the effect of ITPA gene variants on hematological abnormalities during the therapy. RESULTS: The ITPA rs1127354 minor variants were significantly associated with protection against anemia at week 4 (p=1.86 x 10(-6)) and with more severe decreases in platelet counts during HCV combination therapy. SNP rs6051702 was not associated with the hemoglobin decline to >3 g/dL at week 4 in our study (p=0.055). CONCLUSIONS: The ITPA SNP rs1127354 is a useful predictor of ribavirin-induced anemia in Taiwanese patients and may be related to more severe decreases in platelet counts during the early stage of HCV combination therapy.
Adult
;
Aged
;
Anemia/chemically induced/genetics
;
Antiviral Agents/*adverse effects
;
Cross-Sectional Studies
;
Drug Therapy, Combination/adverse effects
;
Female
;
Hematologic Diseases/*chemically induced/genetics
;
Hepacivirus
;
Hepatitis C/*drug therapy
;
Humans
;
Interferon-alpha/adverse effects
;
Male
;
Middle Aged
;
*Polymorphism, Single Nucleotide
;
Pyrophosphatases/*genetics
;
Retrospective Studies
;
Ribavirin/adverse effects
;
Taiwan
;
Thrombocytopenia/chemically induced/genetics
4.Association between IPTA Gene Polymorphisms and Hematological Abnormalities in Hepatitis C Virus-Infected Patients Receiving Combination Therapy.
Jow Jyh HWANG ; Ching Chu LO ; Chien Hung LIN ; Hsu Sheng CHENG ; I Wen HUNG ; Wan Ju TSAI ; Chien Hui HUNG
Gut and Liver 2015;9(2):214-223
BACKGROUND/AIMS: Hematological abnormalities during hepatitis C virus (HCV) combination therapy with pegylated interferon alpha and ribavirin often necessitate dose reduction. Variants of the ITPA gene have been reported to protect against anemia during the early stages of HCV combination treatments but have also been associated with larger decreases in platelet counts. We aimed to identify the association between specific ITPA gene polymorphisms and hematological abnormalities in patients undergoing HCV combination therapy. METHODS: In this retrospective study, 175 patients treated with HCV combination therapy were enrolled at St. Martin De Porres Hospital in Taiwan between 2006 and 2012. Two single nucleotide polymorphisms (SNP) within or adjacent to the ITPA gene (rs1127354, rs6051702) were genotyped. We investigated the effect of ITPA gene variants on hematological abnormalities during the therapy. RESULTS: The ITPA rs1127354 minor variants were significantly associated with protection against anemia at week 4 (p=1.86 x 10(-6)) and with more severe decreases in platelet counts during HCV combination therapy. SNP rs6051702 was not associated with the hemoglobin decline to >3 g/dL at week 4 in our study (p=0.055). CONCLUSIONS: The ITPA SNP rs1127354 is a useful predictor of ribavirin-induced anemia in Taiwanese patients and may be related to more severe decreases in platelet counts during the early stage of HCV combination therapy.
Adult
;
Aged
;
Anemia/chemically induced/genetics
;
Antiviral Agents/*adverse effects
;
Cross-Sectional Studies
;
Drug Therapy, Combination/adverse effects
;
Female
;
Hematologic Diseases/*chemically induced/genetics
;
Hepacivirus
;
Hepatitis C/*drug therapy
;
Humans
;
Interferon-alpha/adverse effects
;
Male
;
Middle Aged
;
*Polymorphism, Single Nucleotide
;
Pyrophosphatases/*genetics
;
Retrospective Studies
;
Ribavirin/adverse effects
;
Taiwan
;
Thrombocytopenia/chemically induced/genetics
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
7.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
8.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
9.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
10.ALDH2 Gene: Its Effects on the Neuropsychological Functions in Patients with Opioid Use Disorder Undergoing Methadone Maintenance Treatment
Po-Wei LEE ; Tzu-Yun WANG ; Yun-Hsuan CHANG ; Sheng-Yu LEE ; Shiou-Lan CHEN ; Ze-Cheng WANG ; Po See CHEN ; Chun-Hsien CHU ; San-Yuan HUANG ; Nian-Sheng TZENG ; I Hui LEE ; Kao Chin CHEN ; Yen Kuang YANG ; Jau-Shyong HONG ; Ru-Band LU
Clinical Psychopharmacology and Neuroscience 2020;18(1):136-144
Objective:
Patients with opioid use disorder (OUD) have impaired attention, inhibition control, and memory function. The aldehyde dehydrogenase 2 (ALDH2 ) gene has been associated with OUD and ALDH2 gene polymorphisms may affect aldehyde metabolism and cognitive function in other substance use disorder. Therefore, we aimed to investigate whether ALDH2 genotypes have significant effects on neuropsychological functions in OUD patients undergoing methadone maintenance therapy (MMT).
Methods:
OUD patients undergoing MMT were investigated and followed-up for 12 weeks. ALDH2 gene polymorphisms were genotyped. Connors’ Continuous Performance Test (CPT) and the Wechsler Memory Scale-Revised (WMS-R) were administered at baseline and after 12 weeks of MMT. Multivariate linear regressions and generalized estimating equations (GEEs) were used to examine the correlation between the ALDH2 genotypes and performance on the CPTs and WMS-R.
Results:
We enrolled 86 patients at baseline; 61 patients completed the end-of-study assessments. The GEE analysis showed that, after the 12 weeks of MMT, OUD patients with the ALDH2 *1/*2+*2/*2 (ALDH2 inactive) genotypes had significantly higher commission error T-scores (p = 0.03), significantly lower hit reaction time T-scores (p = 0.04), and significantly lower WMS-R visual memory index scores (p = 0.03) than did patients with the ALDH2 1 */*1 (ALDH2 active) genotype.
Conclusion
OUD patients with the ALDH2 inactive genotypes performed worse in cognitive domains of attention, impulse control, and memory than did those with the ALDH2 active genotype. We conclude that the ALDH2 gene is important in OUD and is associated with neuropsychological performance after MMT.