1.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
2.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
3.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
4.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
5.An animal model of severe acute respiratory distress syndrome for translational research
Kuo‑An CHU ; Chia‑Yu LAI ; Yu‑Hui CHEN ; Fu‑Hsien KUO ; I.‑Yuan CHEN ; You‑Cheng JIANG ; Ya‑Ling LIU ; Tsui‑Ling KO ; Yu‑Show FU
Laboratory Animal Research 2025;41(1):81-92
Background:
Despite the fact that an increasing number of studies have focused on developing therapies for acute lung injury, managing acute respiratory distress syndrome (ARDS) remains a challenge in intensive care medicine.Whether the pathology of animal models with acute lung injury in prior studies differed from clinical symptoms of ARDS, resulting in questionable management for human ARDS. To evaluate precisely the therapeutic effect of trans‑ planted stem cells or medications on acute lung injury, we developed an animal model of severe ARDS with lower lung function, capable of keeping the experimental animals survive with consistent reproducibility. Establishing this animal model could help develop the treatment of ARDS with higher efficiency.
Results:
In this approach, we intratracheally delivered bleomycin (BLM, 5 mg/rat) into rats’ left trachea via a needle connected with polyethylene tube, and simultaneously rotated the rats to the left side by 60 degrees. Within sevendays after the injury, we found that arterial blood oxygen saturation (SpO2 ) significantly decreased to 83.7%, partial pressure of arterial oxygen (PaO2 ) markedly reduced to 65.3 mmHg, partial pressure of arterial carbon dioxide (PaCO2 )amplified to 49.2 mmHg, and the respiratory rate increased over time. Morphologically, the surface of the left lung appeared uneven on Day 1, the alveoli of the left lung disappeared on Day 2, and the left lung shrank on Day 7. A his‑ tological examination revealed that considerable cell infiltration began on Day 1 and lasted until Day 7, with a larger area of cell infiltration. Serum levels of IL-5, IL-6, IFN-γ, MCP-1, MIP-2, G-CSF, and TNF-α substantially rose on Day 7.
Conclusions
This modified approach for BLM-induced lung injury provided a severe, stable, and one-sided (left-lobe) ARDS animal model with consistent reproducibility. The physiological symptoms observed in this severe ARDS animal model are entirely consistent with the characteristics of clinical ARDS. The establishment of this ARDS animal model could help develop treatment for ARDS.
6.Delayed covering causes the accumulation of motile sperm, leading to overestimation of sperm concentration and motility with a Makler counting chamber.
Lin YU ; Qing-Yuan CHENG ; Ye-Lin JIA ; Yan ZHENG ; Ting-Ting YANG ; Ying-Bi WU ; Fu-Ping LI
Asian Journal of Andrology 2025;27(1):59-64
According to the World Health Organization (WHO) manual, sperm concentration should be measured using an improved Neubauer hemocytometer, while sperm motility should be measured by manual assessment. However, in China, thousands of laboratories do not use the improved Neubauer hemocytometer or method; instead, the Makler counting chamber is one of the most widely used chambers. To study sources of error that could impact the measurement of the apparent concentration and motility of sperm using the Makler counting chamber and to verify its accuracy for clinical application, 67 semen samples from patients attending the Department of Andrology, West China Second University Hospital, Sichuan University (Chengdu, China) between 13 September 2023 and 27 September 2023, were included. Compared with applying the cover glass immediately, delaying the application of the cover glass for 5 s, 10 s, and 30 s resulted in average increases in the sperm concentration of 30.3%, 74.1%, and 107.5%, respectively (all P < 0.0001) and in the progressive motility (PR) of 17.7%, 30.8%, and 39.6%, respectively (all P < 0.0001). However, when the semen specimens were fixed with formaldehyde, a delay in the application of the cover glass for 5 s, 10 s, and 30 s resulted in an average increase in the sperm concentration of 6.7%, 10.8%, and 14.6%, respectively, compared with immediate application of the cover glass. The accumulation of motile sperm due to delays in the application of the cover glass is a significant source of error with the Makler counting chamber and should be avoided.
Humans
;
Male
;
Sperm Motility/physiology*
;
Sperm Count
;
Semen Analysis/methods*
;
Spermatozoa/physiology*
;
Time Factors
7.Differential expressions of exosomal miRNAs in patients with chronic heart failure and hyperuricemia: diagnostic values of miR-27a-5p and miR-139-3p.
Zhiliang CHEN ; Yonggang YANG ; Xia HUANG ; Yan CHENG ; Yuan QU ; Qiqi HENG ; Yujia FU ; Kewei LI ; Ning GU
Journal of Southern Medical University 2025;45(1):43-51
OBJECTIVES:
To analyze the differentially expressed exosomal miRNAs in patients with chronic heart failure (CHF) complicated by hyperuricemia (HUA) and explore their potential as novel diagnostic molecular markers and their target genes.
METHODS:
This study was conducted among 30 CHF patients with HUA (observation group) and 30 healthy volunteers (control group) enrolled between September, 2020 and September, 2023. Peripheral blood samples were collected from 6 CHF patients with HUA for analyzing exosomal miRNAs by high-throughput sequencing, and the results were validated in the remaining 24 patients using qRT-PCR. GO and KEGG enrichment analyses were performed to predict the the target genes of the identified differential miRNAs. We also validated the differentially expressed miRNAs by animal experiment.
RESULTS:
A total of 42 differentially expressed exosomal miRNAs were detected in observation group by high-throughput sequencing; among them, miR-27a-5p was significantly upregulated (P=0.000179), and miR-139-3p was significantly downregulated (P=0.000058). In the 24 patients with both CHF and PUA, qRT-PCR validated significant upregulation of miR-27a-5p (P=0.004) and downregulation of miR-139-3p (P=0.005) in serum exosomes. When combined, miR-27a-5p and miR-139-3p had a maximum area under the curve (AUC) of 0.899 (95% CI: 0812-0.987) for predicting CHF complicated by HUA. GO and KEGG enrichment analyses suggested that the differential expressions of miR-27a-5p and miR-139-3p was associated with the activation of the AMPK-mTOR signaling pathway to activate the autophagic response. We obtained the same conclusion from animal experiment.
CONCLUSIONS
Upregulated exosomal miR-27a-5p combined with downregulated exosomal miR-139-3p expression can serve as a novel molecular marker for diagnosis of CHF complicated by HUA, and their differential expression may promote autophagy in cardiomyocytes by activating the AMPK-mTOR signaling pathway.
Humans
;
Hyperuricemia/diagnosis*
;
Heart Failure/genetics*
;
MicroRNAs/metabolism*
;
Exosomes/metabolism*
;
Chronic Disease
;
Male
;
Female
;
Middle Aged
;
Animals
8.Health Risks from Exposure to PM 2.5-bound Polycyclic Aromatic Hydrocarbons in Fumes Emitted from Various Cooking Styles and Their Respiratory Deposition in a City Population Stratified by Age and Sex.
Jun Feng ZHANG ; Xi CHEN ; Ke GAO ; Shui Yuan CHENG ; Wen Jiao DUAN ; Li Ying FU ; Jian Jia LI ; Shu Shu LAN ; Cui Lan FANG
Biomedical and Environmental Sciences 2025;38(10):1230-1245
OBJECTIVES:
To characterize fine particulate matter (PM 2.5)-bound polycyclic aromatic hydrocarbons (PAHs) emitted from different cooking fumes and their exposure routes and assess their health-associated impact to provide a reference for health risk prevention from PAH exposure across different age and sex groups.
METHODS:
Sixteen PM 2.5-bound PAHs emitted from 11 cooking styles were analyzed using GC-MS/MS. The health hazards of these PAHs in the Handan City population (stratified by age and sex) were predicted using the incremental lifetime cancer risk ( ILCR) model. The respiratory deposition doses ( RDDs) of the PAHs in children and adults were calculated using the PM 2.5 deposition rates in the upper airway, tracheobronchial, and alveolar regions.
RESULTS:
The total concentrations of PM 2.5-bound PAHs ranged from 61.10 to 403.80 ng/m 3. Regardless of cooking styles, the ILCR total values for adults (1.23 × 10 -6 to 3.70 × 10 -6) and older adults (1.28 × 10 -6 to 3.88 × 10 -6) exceeded the acceptable limit of 1.00 × 10 -6. With increasing age, the ILCR total value first declined and then increased, varying substantially among the population groups. Cancer risk exhibited particularly high sensitivity to short exposure to barbecue-derived PAHs under equivalent body weights. Furthermore, barbecue, Sichuan and Hunan cuisine, Chinese cuisine, and Chinese fast food were associated with higher RDDs for both adults and children.
CONCLUSION
ILCR total values exceeded the acceptable limit for both females and males of adults, with all cooking styles showing a potentially high cancer risk. Our findings serve as an important reference for refining regulatory strategies related to catering emissions and mitigating health risks associated with cooking styles.
Humans
;
Polycyclic Aromatic Hydrocarbons/analysis*
;
Cooking/methods*
;
Male
;
Female
;
Particulate Matter/analysis*
;
Adult
;
Child
;
Middle Aged
;
Air Pollutants/analysis*
;
Adolescent
;
Air Pollution, Indoor/analysis*
;
Young Adult
;
Child, Preschool
;
Aged
;
China
;
Inhalation Exposure
;
Age Factors
;
Sex Factors
;
Cities
;
Infant
9.The enlightenment of artificial intelligence large-scale model on the research of intelligent eye diagnosis in traditional Chinese medicine
Yuan GAO ; Zixuan WU ; Boyang SHENG ; Fu ZHANG ; Yong CHENG ; Junfeng YAN ; Qinghua PENG
Digital Chinese Medicine 2024;7(2):101-107
Eye diagnosis is a method for inspecting systemic diseases and syndromes by observing the eyes.With the development of intelligent diagnosis in traditional Chinese medicine(TCM),artificial intelligence(AI)can improve the accuracy and efficiency of eye diagnosis.However,the research on intelligent eye diagnosis still faces many challenges,including the lack of standardized and precisely labeled data,multi-modal information analysis,and artificial in-telligence models for syndrome differentiation.The widespread application of AI models in medicine provides new insights and opportunities for the research of eye diagnosis intelli-gence.This study elaborates on the three key technologies of AI models in the intelligent ap-plication of TCM eye diagnosis,and explores the implications for the research of eye diagno-sis intelligence.First,a database concerning eye diagnosis was established based on self-su-pervised learning so as to solve the issues related to the lack of standardized and precisely la-beled data.Next,the cross-modal understanding and generation of deep neural network models to address the problem of lacking multi-modal information analysis.Last,the build-ing of data-driven models for eye diagnosis to tackle the issue of the absence of syndrome dif-ferentiation models.In summary,research on intelligent eye diagnosis has great potential to be applied the surge of AI model applications.
10.Correlation between prognostic nutritional index and HALP score with the prognosis of middle-advanced prostate cancer patients:A multicenter retrospective study
Yuan-Hui CHENG ; Feng LIU ; Qin JIANG ; Min ZHOU ; Yu-Ying LIAN ; Zhi-Fu DONG
Parenteral & Enteral Nutrition 2024;31(4):239-244,251
Objective:To explore the relationship between the Prognostic Nutritional Index (PNI) and the HALP score with the prognosis of patients with middle-to-advanced prostate cancer. Methods:A total of 168 patients with middle-to-advanced prostate cancer admitted to three comprehensive tertiary hospitals were observed from 2013 to 2018. Patient medical records were reviewed,and overall survival (OS) and progression-free survival (PFS) were followed up. The receiver operating characteristic (ROC) curve was used to calculate the area under the curve (AUC) and the optimal cut-off value of PNI and HALP scores for predicting patients' prognosis. The Kaplan-Meier method was used to draw survival curves,and the Log-rank test and Cox regression were used to analyze the influencing factors of patient OS and PFS. Results:The follow-up period was 55 (38.5,63) months,with 87 deaths (51.79%) during this period. The median OS and PFS times were 50 months and 45 months,respectively. The 3-year OS and PFS survival rates were 72.02% and 64.29%,respectively. The areas under the ROC curve for predicting patients' prognosis with PNI and HALP scores were 0.912 and 0.828,respectively,with optimal cut-off values of 46.3 and 31.64 (P<0.05). Multivariate Cox regression showed that PNI<46.3,HALP score<31.64,and age ≥ 60 years were risk factors for OS with HR (95% CI) of 6.016 (3.273~11.056),2.537 (1.531~4.205),and 1.776 (1.221~2.967),respectively (P<0.05). AJCC stage Ⅳ,PNI<46.3,and HALP<31.64 were risk factors for PFS with HR (95% CI) of 2.777 (1.381~5.419),5.940 (3.245~10.872),and 2.481 (1.498~4.109),respectively (P<0.05). Conclusion:PNI and HALP scores can predict the prognosis of patients with middle-to-advanced prostate cancer.

Result Analysis
Print
Save
E-mail