1.Inverse distance weight interpolation method for missing data of PM2.5 spatiotemporal series
Yurou LIANG ; Hongling WU ; Weipeng WANG ; Feng CHENG ; Ping DUAN
Journal of Environmental and Occupational Medicine 2025;42(2):171-178
Background Fine particulate matter (PM2.5) monitoring stations may generate missing data for a certain period of time due to various factors. This data loss will adversely affect air quality assessment and pollution control decision-making. Objective To propose an inverse distance weighted (IDW) spatiotemporal interpolation method based on particle swarm optimization (PSO) to interpolate and fill missing PM2.5 spatiotemporal sequence data and increase interpolation accuracy. Methods An interpolation experiment was designed into two parts. The first part used hourly PM2.5 observational data from four moments on January 1, 2017 in the Yangtze River Delta region. The second part employed daily PM2.5 observational data from the first 10 d of January 2017 in the Beijing-Tianjin-Hebei region. Interpolation accuracy was evaluated using four metrics: root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and mean relative error (MRE). Results IDW spatiotemporal interpolation method optimized with PSO significantly improved the accuracy of filling missing PM2.5 spatiotemporal sequence data. In the hourly-scale experiment conducted in the Yangtze River Delta region, compared to a distance index of 2, the accuracy metrics RMSE, MAE, MAPE, and MRE generated by the proposed method improved on average by 0.17 μg·m−3, 0.27 μg·m−3, 0.17%, and 0.01%, respectively. The PM2.5 spatial field maps generated for four moments based on this method clearly illustrated the spatiotemporal distribution characteristics of hourly PM2.5 concentrations in the Yangtze River Delta region. In the daily-scale experiment conducted in the Beijing-Tianjin-Hebei region, the PSO-optimized distance index outperformed the traditional method, with interpolation accuracy improvements of approximately 0.215 μg·m−3, 0.283 μg·m−3, 0.174%, and 0.014%, respectively. Furthermore, the seasonal PM2.5 spatial field maps generated by this method revealed the spatiotemporal distribution characteristics of PM2.5 concentrations in the Beijing-Tianjin-Hebei region across different seasons, further validating the effectiveness and applicability of this method. Conclusion The IDW spatiotemporal interpolation method optimized with PSO is highly accurate and reliable for interpolating the missing data in the Yangtze River Delta region and the Beijing-Tianjin-Hebei region, providing valuable insights for air pollution control and public health protection.
2.Phenomics of traditional Chinese medicine 2.0: the integration with digital medicine
Min Xu ; Xinyi Shao ; Donggeng Guo ; Xiaojing Yan ; Lei Wang ; Tao Yang ; Hao LIANG ; Qinghua PENG ; Lingyu Linda Ye ; Haibo Cheng ; Dayue Darrel Duan
Digital Chinese Medicine 2025;8(3):282-299
Abstract
Modern western medicine typically focuses on treating specific symptoms or diseases, and traditional Chinese medicine (TCM) emphasizes the interconnections of the body’s various systems under external environment and takes a holistic approach to preventing and treating diseases. Phenomics was initially introduced to the field of TCM in 2008 as a new discipline that studies the laws of integrated and dynamic changes of human clinical phenomes under the scope of the theories and practices of TCM based on phenomics. While TCM Phenomics 1.0 has initially established a clinical phenomic system centered on Zhenghou (a TCM definition of clinical phenome), bottlenecks remain in data standardization, mechanistic interpretation, and precision intervention. Here, we systematically elaborates on the theoretical foundations, technical pathways, and future challenges of integrating digital medicine with TCM phenomics under the framework of “TCM phenomics 2.0”, which is supported by digital medicine technologies such as artificial intelligence, wearable devices, medical digital twins, and multi-omics integration. This framework aims to construct a closed-loop system of “Zhenghou–Phenome–Mechanism–Intervention” and to enable the digitization, standardization, and precision of disease diagnosis and treatment. The integration of digital medicine and TCM phenomics not only promotes the modernization and scientific transformation of TCM theory and practice but also offers new paradigms for precision medicine. In practice, digital tools facilitate multi-source clinical data acquisition and standardization, while AI and big data algorithms help reveal the correlations between clinical Zhenghou phenomes and molecular mechanisms, thereby improving scientific rigor in diagnosis, efficacy evaluation, and personalized intervention. Nevertheless, challenges persist, including data quality and standardization issues, shortage of interdisciplinary talents, and insufficiency of ethical and legal regulations. Future development requires establishing national data-sharing platforms, strengthening international collaboration, fostering interdisciplinary professionals, and improving ethical and legal frameworks. Ultimately, this approach seeks to build a new disease identification and classification system centered on phenomes and to achieve the inheritance, innovation, and modernization of TCM diagnostic and therapeutic patterns.
3.Mechanism of Xiangsha Liujunzi Decoction in improving autophagy in interstitial cells of Cajal of rats with functional dyspepsia by regulation of IRE1/ASK1/JNK pathway.
Ming-Kai LYU ; Yong-Qiang DUAN ; Jin JIN ; Wen-Chao SHAO ; Qi WU ; Yong TIAN ; Min BAI ; Ying-Xia CHENG
China Journal of Chinese Materia Medica 2025;50(8):2237-2244
This study explored the mechanism of Xiangsha Liujunzi Decoction(XSLJZD) in the treatment of functional dyspepsia(FD) based on inositol-requiring enzyme 1(IRE1)/apoptosis signal-regulating kinase 1(ASK1)/c-Jun N-terminal kinase(JNK) pathway-mediated autophagy in interstitial cells of Cajal(ICC). Forty-eight SPF-grade male SD suckling rats were randomly divided into a blank group and a modeling group, and the integrated modeling method(iodoacetamide gavage + disturbance of hunger and satiety + swimming exhaustion) was used to replicate the FD rat model. After the model replications were successfully completed, the rats were divided into a model group, high-dose, medium-dose, and low-dose groups of XSLJZD(12, 6, and 3 g·kg~(-1)·d~(-1)), and a positive drug group(mosapride of 1.35 mg·kg~(-1)·d~(-1)), and the intervention lasted for 14 days. The gastric emptying rate and intestinal propulsion rate of rats in each group were measured. The histopathological changes in the gastric sinus tissue of rats in each group were observed by hematoxylin-eosin(HE) staining. The ultrastructure of ICC was observed by transmission electron microscopy. The immunofluorescence double staining technique was used to detect the protein expression of phospho-IRE1(p-IRE1), TNF receptor associated factors 2(TRAF2), phospho-ASK1(p-ASK1), phospho-JNK(p-JNK), p62, and Beclin1 in ICC of gastric sinus tissue of rats in each group. Western blot was used to detect the related protein expression of gastric sinus tissue of rats in each group. Compared with those in the blank group, the rats in the model group showed decreased body weight, gastric emptying rate, and intestinal propulsion rate, and transmission electron microscopy revealed damage to the endoplasmic reticulum structure and increased autophagosomes in ICC. Immunofluorescence staining revealed that the ICC of gastric sinus tissue showed a significant elevation of p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins and a significant reduction of p62 protein. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. Compared with the model group, the body weight of rats in the high-dose and medium-dose groups of XSLJZD was increased, and the gastric emptying rate and intestinal propulsion rate were increased. Transmission electron microscopy observed amelioration of structural damage to the endoplasmic reticulum of ICC and reduction of autophagosomes, and the p-IRE1, TRAF2, p-ASK1, p-JNK, and Beclin1 proteins in the ICC of gastric sinus tissue were significantly decreased. The p62 protein was significantly increased. Western blot revealed that the expression levels of relevant proteins in gastric sinus tissue were consistent with those of proteins in ICC. XSLJZD can effectively treat FD, and its specific mechanism may be related to the inhibition of the expression of molecules related to the endoplasmic reticulum stress IRE1/ASK1/JNK pathway in ICC and the improvement of autophagy to promote gastric motility in ICC.
Animals
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Autophagy/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Interstitial Cells of Cajal/metabolism*
;
Dyspepsia/physiopathology*
;
Protein Serine-Threonine Kinases/genetics*
;
MAP Kinase Kinase Kinase 5/genetics*
;
MAP Kinase Signaling System/drug effects*
;
Humans
;
Endoribonucleases/genetics*
;
Multienzyme Complexes
4.Research progress in three-dimensional-printed bone scaffolds combined with vascularized tissue flaps for segmental bone defect reconstruction.
Qida DUAN ; Hongyun SHAO ; Ning LUO ; Fuyang WANG ; Liangliang CHENG ; Jiawei YING ; Dewei ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(5):639-646
OBJECTIVE:
To review and summarize the research progress on repairing segmental bone defects using three-dimensional (3D)-printed bone scaffolds combined with vascularized tissue flaps in recent years.
METHODS:
Relevant literature was reviewed to summarize the application of 3D printing technology in artificial bone scaffolds made from different biomaterials, as well as methods for repairing segmental bone defects by combining these scaffolds with various vascularized tissue flaps.
RESULTS:
The combination of 3D-printed artificial bone scaffolds with different vascularized tissue flaps has provided new strategies for repairing segmental bone defects. 3D-printed artificial bone scaffolds include 3D-printed polymer scaffolds, bio-ceramic scaffolds, and metal scaffolds. When these scaffolds of different materials are combined with vascularized tissue flaps ( e.g., omental flaps, fascial flaps, periosteal flaps, muscular flaps, and bone flaps), they provide blood supply to the inorganic artificial bone scaffolds. After implantation into the defect site, the scaffolds not only achieve structural filling and mechanical support for the bone defect area, but also promote osteogenesis and vascular regeneration. Additionally, the mechanical properties, porous structure, and biocompatibility of the 3D-printed scaffold materials are key factors influencing their osteogenic efficiency. Furthermore, loading the scaffolds with active components such as osteogenic cells and growth factors can synergistically enhance bone defect healing and vascularization processes.
CONCLUSION
The repair of segmental bone defects using 3D-printed artificial bone scaffolds combined with vascularized tissue flap transplantation integrates material science technologies with surgical therapeutic approaches, which will significantly improve the clinical treatment outcomes of segmental bone defect repair.
Printing, Three-Dimensional
;
Tissue Scaffolds
;
Humans
;
Surgical Flaps/blood supply*
;
Tissue Engineering/methods*
;
Plastic Surgery Procedures/methods*
;
Bone and Bones/surgery*
;
Biocompatible Materials
;
Bone Regeneration
;
Bone Transplantation/methods*
;
Bone Substitutes
;
Osteogenesis
5.Effectiveness of three-needle and two-cable structure in treatment of inferior patellar pole avulsion fractures.
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):686-691
OBJECTIVE:
To investigate the effectiveness of three-needle and two-cable structure in the treatment of inferior patellar pole avulsion fractures.
METHODS:
A clinical data of 62 patients with inferior patellar pole avulsion fractures who were admitted between January 2023 and December 2023 and met the selection criteria was retrospectively analyzed. Among them, the fractures were fixed with three-needle and two-cable structure in 32 patients (observation group) and traditional steel wire tension band in 30 cases (control group). There was no significant difference in the baseline data of age, gender, side of the affected limb, cause of injury, and disease duration between the two groups ( P>0.05). The operation time, fracture healing and healing time, patellar height (Insall-Salvati index), occurrence of complications, knee range of motion, and Böstman score at last follow-up were compared between the two groups.
RESULTS:
The operation time of the observation group was significantly shorter than that of the control group ( P<0.05). Patients in both groups were followed up 6-12 months (mean, 10.4 months). X-ray films re-examination showed that all fractures healed, and the fracture healing time was significantly shorter in observation group than in control group ( P<0.05); no significant difference was found in Insall-Salvati index between the two groups ( P>0.05). During follow-up, the complications occurred in 2 cases (6.25%) of observation group and in 9 cases (30.00%) of control group, and the difference in the incidences between the two groups was significant ( P<0.05). At last follow-up, the range of motion and Böstman score of the knee joint in observation group were significantly superior to control group ( P<0.05).
CONCLUSION
Compared with the traditional steel wire tension band fixation, the three-needle and two-cable structure fixation of the inferior patellar pole avulsion fractures is firm, which allows the knee joint to move early after operation and is conducive to the recovery of knee joint function.
Humans
;
Male
;
Patella/surgery*
;
Female
;
Fracture Fixation, Internal/instrumentation*
;
Retrospective Studies
;
Adult
;
Bone Wires
;
Fractures, Avulsion/surgery*
;
Middle Aged
;
Young Adult
;
Range of Motion, Articular
;
Treatment Outcome
;
Fracture Healing
;
Needles
;
Adolescent
;
Operative Time
6.Research progress in biomechanics of different fixation methods for medial opening-wedge high tibial osteotomy.
Hongyun SHAO ; Qida DUAN ; Ning LUO ; Fuyang WANG ; Liangliang CHENG ; Jiawei YING ; Dewei ZHAO
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):769-776
OBJECTIVE:
To summarize the biomechanical research progress on different fixation methods in medial opening-wedge high tibial osteotomy (MOWHTO) and provide references for selecting appropriate fixation methods in clinical applications of MOWHTO for treating knee osteoarthritis (KOA).
METHODS:
Recent domestic and international literature on the biomechanical studies of MOWHTO fixation methods was reviewed to analyze the characteristics and biomechanical performance of various fixation techniques.
RESULTS:
The medial-specific osteotomy plate system has become the mainstream due to its high stiffness and stability, but issues such as soft tissue irritation and stress shielding remain. The use of filler blocks significantly enhances fixation stability and promotes bone healing when the osteotomy gap is large, reducing axial displacement by 73%-76% and decreasing plate stress by 90%. Auxiliary screws improve axial and torsional stability, particularly in cases with large correction angles, effectively preventing lateral hinge fractures. Alternative fixation methods like external fixators hold unique clinical value by minimizing soft tissue irritation and allowing postoperative adjustment.
CONCLUSION
There is currently no unified standard for selecting MOWHTO fixation methods. Clinical decisions should comprehensively consider factors such as bone quality, correction angle, and postoperative rehabilitation needs.
Humans
;
Osteotomy/instrumentation*
;
Biomechanical Phenomena
;
Tibia/surgery*
;
Bone Plates
;
Osteoarthritis, Knee/surgery*
;
Bone Screws
;
External Fixators
;
Knee Joint/surgery*
7.Therapeutic effect of concentrated growth factors combined with self-curing calcium phosphate cement on periodontal intrabony defects: Clinical and radiographic evaluation.
Xinying WANG ; Xueyuan CHENG ; Yong ZHANG ; Fei LI ; Jinyu DUAN ; Jing QIAO
Journal of Peking University(Health Sciences) 2025;57(1):42-50
OBJECTIVE:
To clarify the role of concentrated growth factors (CGF) in the treatment of periodontal cement defects using calcium phosphate cement (CPC) with self-curing properties.
METHODS:
Thirty-six intrabony defects were randomly divided into two groups. The experimental group received CGF+CPC treatment (n=18), while the control group received CPC treatment alone (n=18). The probing depth, clinical attachment loss, and hard tissue filling as measured by cone beam CT (CBCT) were evaluated at baseline and 1 year postoperatively in both groups, and the levels of major growth factors in CGF and serum were compared [platelet-derived growth factor-BB (PDGF-BB), transforming growth factor-β1 (TGF-β1), insulin-like growth factor-1 (IGF-1), and vascular endothelial growth factor (VEGF)].
RESULTS:
At baseline, there were no statistically significant differences in probing depth, clinical attachment loss and CBCT measurements between the two groups (P>0.05). At 1 year postoperatively, significant improvements were observed in parameters mentioned above in both groups (P < 0.05). The CGF+CPC group seemed more effective compared with the CPC group in reduction of probing depth [(4.5±1.3) mm vs. (3.2±1.1) mm] and clinical attachment gain [(3.8±0.9) mm vs. (2.0±0.5) mm, P < 0.05]. Compared with the group treated with CPC alone, the hard tissue filling degree shown by CBCT in the CGF+CPC group was significantly increased [the reduction of the depth of the intrabony defects was (3.9±1.2) mm vs. (2.1±0.7) mm, respectively, P < 0.01]. At 1 year post-operatively, the volume of the intrabony defects shown by CBCT in the CGF+CPC group was reduced by (0.031 8±0.004 1) mL, which was significantly more than that in the CPC group [(0.019 7±0.001 2) mL, P < 0.05]. In addition, the concentration of the main growth factors (PDGF-BB, TGF-β1, IGF-1, and VEGF) in CGF were higher than those in serum (P < 0.001).
CONCLUSION
After 1 year of follow-up, the results of the present study indicated that CGF could significantly improve the clinical and radiological effects of CPC on the treatment of periodontal intrabony defects.
Humans
;
Calcium Phosphates/therapeutic use*
;
Male
;
Female
;
Bone Cements/therapeutic use*
;
Middle Aged
;
Cone-Beam Computed Tomography
;
Alveolar Bone Loss/therapy*
;
Becaplermin
;
Adult
;
Insulin-Like Growth Factor I
;
Intercellular Signaling Peptides and Proteins/therapeutic use*
;
Proto-Oncogene Proteins c-sis/blood*
;
Transforming Growth Factor beta1/blood*
;
Vascular Endothelial Growth Factor A/blood*
8.The Valvular Heart Disease-specific Age-adjusted Comorbidity Index (VHD-ACI) score in patients with moderate or severe valvular heart disease.
Mu-Rong XIE ; Bin ZHANG ; Yun-Qing YE ; Zhe LI ; Qing-Rong LIU ; Zhen-Yan ZHAO ; Jun-Xing LV ; De-Jing FENG ; Qing-Hao ZHAO ; Hai-Tong ZHANG ; Zhen-Ya DUAN ; Bin-Cheng WANG ; Shuai GUO ; Yan-Yan ZHAO ; Run-Lin GAO ; Hai-Yan XU ; Yong-Jian WU
Journal of Geriatric Cardiology 2025;22(9):759-774
BACKGROUND:
Based on the China-VHD database, this study sought to develop and validate a Valvular Heart Disease- specific Age-adjusted Comorbidity Index (VHD-ACI) for predicting mortality risk in patients with VHD.
METHODS & RESULTS:
The China-VHD study was a nationwide, multi-centre multi-centre cohort study enrolling 13,917 patients with moderate or severe VHD across 46 medical centres in China between April-June 2018. After excluding cases with missing key variables, 11,459 patients were retained for final analysis. The primary endpoint was 2-year all-cause mortality, with 941 deaths (10.0%) observed during follow-up. The VHD-ACI was derived after identifying 13 independent mortality predictors: cardiomyopathy, myocardial infarction, chronic obstructive pulmonary disease, pulmonary artery hypertension, low body weight, anaemia, hypoalbuminaemia, renal insufficiency, moderate/severe hepatic dysfunction, heart failure, cancer, NYHA functional class and age. The index exhibited good discrimination (AUC, 0.79) and calibration (Brier score, 0.062) in the total cohort, outperforming both EuroSCORE II and ACCI (P < 0.001 for comparison). Internal validation through 100 bootstrap iterations yielded a C statistic of 0.694 (95% CI: 0.665-0.723) for 2-year mortality prediction. VHD-ACI scores, as a continuous variable (VHD-ACI score: adjusted HR (95% CI): 1.263 (1.245-1.282), P < 0.001) or categorized using thresholds determined by the Yoden index (VHD-ACI ≥ 9 vs. < 9, adjusted HR (95% CI): 6.216 (5.378-7.184), P < 0.001), were independently associated with mortality. The prognostic performance remained consistent across all VHD subtypes (aortic stenosis, aortic regurgitation, mitral stenosis, mitral regurgitation, tricuspid valve disease, mixed aortic/mitral valve disease and multiple VHD), and clinical subgroups stratified by therapeutic strategy, LVEF status (preserved vs. reduced), disease severity and etiology.
CONCLUSION
The VHD-ACI is a simple 13-comorbidity algorithm for the prediction of mortality in VHD patients and providing a simple and rapid tool for risk stratification.
9.Discovery of a potential hematologic malignancies therapy: Selective and potent HDAC7 PROTAC degrader targeting non-enzymatic function.
Yuheng JIN ; Xuxin QI ; Xiaoli YU ; Xirui CHENG ; Boya CHEN ; Mingfei WU ; Jingyu ZHANG ; Hao YIN ; Yang LU ; Yihui ZHOU ; Ao PANG ; Yushen LIN ; Li JIANG ; Qiuqiu SHI ; Shuangshuang GENG ; Yubo ZHOU ; Xiaojun YAO ; Linjie LI ; Haiting DUAN ; Jinxin CHE ; Ji CAO ; Qiaojun HE ; Xiaowu DONG
Acta Pharmaceutica Sinica B 2025;15(3):1659-1679
HDAC7, a member of class IIa HDACs, plays a pivotal regulatory role in tumor, immune, fibrosis, and angiogenesis, rendering it a potential therapeutic target. Nevertheless, due to the high similarity in the enzyme active sites of class IIa HDACs, inhibitors encounter challenges in discerning differences among them. Furthermore, the substitution of key residue in the active pocket of class IIa HDACs renders them pseudo-enzymes, leading to a limited impact of enzymatic inhibitors on their function. In this study, proteolysis targeting chimera (PROTAC) technology was employed to develop HDAC7 drugs. We developed an exceedingly selective HDAC7 PROTAC degrader B14 which showcased superior inhibitory effects on cell proliferation compared to TMP269 in various diffuse large B cell lymphoma (DLBCL) and acute myeloid leukemia (AML) cells. Subsequent investigations unveiled that B14 disrupts BCL6 forming a transcriptional inhibition complex by degrading HDAC7, thereby exerting proliferative inhibition in DLBCL. Our study broadened the understanding of the non-enzymatic functions of HDAC7 and underscored the importance of HDAC7 in the treatment of hematologic malignancies, particularly in DLBCL and AML.
10.Inhaled non-viral delivery systems for RNA therapeutics.
Cheng HUANG ; Hongjian LI ; Xing DUAN ; Peidong ZHANG ; Shaolong QI ; Jianshi DU ; Xiangrong SONG ; Aiping TONG ; Guocan YU
Acta Pharmaceutica Sinica B 2025;15(5):2402-2430
RNA-based gene therapy has been widely used for various diseases, and extensive studies have proved that suitable delivery routes greatly help the development of RNA therapeutics. Identifying a safe and effective delivery system is key to realizing RNA therapeutics' clinical translation. Inhalation is a non-invasive pulmonary delivery modality that can enhance the retention of therapeutic agents in the lungs with negligible toxicity, thereby improving patient compliance. Inhaled RNA therapeutics are increasingly becoming an area of focus for researchers; however, only several clinical trials have explored inhaled delivery of RNA for pulmonary diseases. This review presents an overview of recent advances in inhaled delivery systems for RNA therapeutics, including viral and nonviral systems, highlighting state of the art regarding inhalation in the messenger RNA (mRNA) field. We also summarize the applications of mRNA inhalants in infectious and other lung diseases. Simultaneously, the research progresses on small interfering RNAs (siRNAs), antisense oligonucleotides (ASOs), and different types of RNA are also discussed to provide new strategies for developing RNA inhalation therapy. Finally, we clarify the challenges inhaled RNA-based therapeutics face before their widespread adoption and provide insights to help advance this exciting field to the bedside.

Result Analysis
Print
Save
E-mail