1.Herbal Textual Research on Quisqualis Fructus in Famous Classical Formulas
Xiuping WEN ; Shiying CHEN ; Ying TAN ; Guanwen ZHENG ; Huilong XU ; Wen XU ; Chengzi YANG ; Zehao HUANG ; Yu LIN ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):225-237
This article systematically analyzed the historical evolution of the origin, scientific name, producing area, quality evaluation, harvesting and processing, and other aspects of Quisqualis Fructus by consulting the ancient materia medica, medical books, prescription books, local literature and combining with the modern literature and standards, summarized and explored the development rules of its medicinal properties and efficacy along with their underlying causes, in order to provide support for the development and utilization of famous classical formulas containing this herb. According to the textual research, Shijunzi was first recorded as Liuqiuzi in Nanfang Caomuzhuang of the Jin dynasty, and the name of Shijunzi was first used in Kaibao Bencao of the Song dynasty, which has been consistently used throughout subsequent dynasties, and there were also aliases such as Junziren, Sijunzi, and Dujilizi. The mainstream source of Quisqualis Fructus used in the past dynasties has been the dried mature fruits of Quisqualis indica, a plant belonging to the family Combretaceae. In modern times, its variety Q. indica var. villosa has also been recorded as the medicinal material of Quisqualis Fructus. In 2007, the Flora of China(English edition) designated Q. indica var. villosa as a synonym of Q. indica. Today, the accepted name of Shijunzi is updated to Combretum indicum. According to ancient herbal records, the producing areas of Quisqualis Fructus were Guangdong, Hong Kong, Macao, Guangxi, Hainan, Sichuan and Fujian, and then gradually expanded to Yunnan, Taiwan, Jiangxi and Guizhou. Since the Song dynasty, two major production regions have gradually emerged in Sichuan, Chongqing and Fujian. Currently, it is primarily cultivated in Chongqing, Guangxi and other areas, with Chongqing yielding the highest output. Since modern times, superior quality has been defined by large size, a purple-black surface, plump grains, and a yellowish-white kernel. According to ancient herbal records, the harvesting period of Quisqualis Fructus was the July and August of the lunar calendar, mostly used raw after shelling or with the shell intact, it underwent processing methods such as cleaning, slicing, mixing, steaming, roasting, stewing, and frying. Currently, the harvesting period is autumn, followed by sun-drying or low-heat drying, with processing methods including cleaning, stir-frying, and stewing. In ancient and modern literature, the records of the properties, functions and indications of Quisqualis Fructus are basically the same, that is, sweet in taste, warm in nature, predominantly non-toxic, belonging to the spleen and stomach meridians. It possesses effects of insecticide, decontamination and invigorating spleen for ascariasis, enterobiasis, abdominal pain due to worm accumulation and infantile malnutrition.The contraindications for use primarily include avoiding consumption by individuals without parasitic infestations, limiting use for those with spleen-stomach deficiency-cold, refraining from drinking hot tea during medication, and avoiding excessive intake. Based on the textual research, it is suggested that the dried mature fruits of Q. indica should be used as the medicinal material for the development of famous classical formulas containing Quisqualis Fructus. Processing methods may be chosen according to prescription requirements, and the raw products is recommended for medicinal use if not specified.
2.The introduction on the new standards of pharmaceutical excipients in the Chinese Pharmacopoeia 2025 Edition
CHEN Lei ; CHEN Ying ; TU Jiasheng ; LIU Yanming ; ZHENG Luxia ; ZHANG Jun ; MA Shuangcheng
Drug Standards of China 2025;26(1):058-066
According to the work goals and tasks determined by edition outline of the Chinese Pharmacopoeia 2025 Edition, the Chinese Pharmacopoeia 2025 Edition has been completed. Among them, 52 new pharmaceutical excipients monographs have been added, an increase of 15.5% compared with the 2020 Edition, and the total number has reached 387. This article focuses on the general framework and the main characteristics of the standards of pharmaceutical excipients in the Chinese Pharmacopoeia 2025 Edition, which can contribute to accurately understand and utilize the standards in Chinese Pharmacopoeia.
3.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
4.Effect of Modified Chaihu Shugansan on CaMKⅡ/CREB Signaling Pathway in Rats with Myocardial Ischemia and Depression
Fen WAN ; Xiaohong LI ; Ying CHEN ; Yangyu PAN ; Yanna LUO ; Fangge LU ; Chuncheng ZHENG ; Pengyun KONG ; Chengxiang WANG ; Liqiang YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):1-11
ObjectiveTo observe the effects of modified Chaihu Shugansan on the calmodulin-dependent protein kinase Ⅱ(CaMKⅡ)/cAMP-response element binding protein (CREB) signaling pathway in the hippocampus and heart tissue of a rat model with myocardial ischemia and depression and explore the mechanism by which this formula prevents and treats coronary heart disease combined with depression. MethodsThe model of myocardial ischemia combined with depression was established by high-fat diet, intraperitoneal injection of isoproterenol (ISO), and chronic unpredictable mild stress (CUMS). A total of 108 SD male rats were randomly divided into normal group, model group, high (23.4 g·kg-1), medium (11.7 g·kg-1), and low (5.85 g·kg-1) dose groups of modified Chaihu Shugansan, CaMKⅡ inhibitor (KN93) group, and KN93 + high, medium, and low dose groups of modified Chaihu Shugansan, with 12 rats in each group. From the first day of modeling to the end of modeling, drugs were administered once a day. In the seventh and eighth weeks, the KN93 group and the KN93 + high, medium, and low dose groups of modified Chaihu Shugansan were intraperitoneally injected with KN93 three times weekly. At the end of the eighth week, behavioral tests including sucrose preference, open field, and elevated plus maze were conducted. Electrocardiogram (ECG) lead Ⅱ changes were observed in each group of rats, and hematoxylin-eosin (HE) staining was performed to observe changes in heart tissue. Serum levels of triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), low-density lipoprotein (LDL), and lactate dehydrogenase (LDH) were measured by using an enzyme-labeled instrument. Creatine kinase (CK) and creatine kinase-MB (CK-MB) were detected by ultraviolet spectrophotometry, while serum monocyte chemoattractant protein-1 (MCP-1) was measured by enzyme-linked immunosorbent assay (ELISA). Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) was used to detect mRNA expression of CaMKⅡ and CREB in hippocampal and heart tissue, and Western blot was performed to assess protein expression of CaMKⅡ, phosphorylated (p)-CaMKⅡ, CREB, and p-CREB. ResultsCompared to the normal group, the model group showed significant reductions in sucrose preference rate, total activity distance in the open field, number of entries into the center area of the open field, and percentage of entries into the open arms of the elevated plus maze (P<0.01). The ECG showed ST-segment elevation, and HE staining showed serious degeneration of myocardial fibers, disordered arrangement, and infiltration of a large number of inflammatory cells. In addition, serum TC and LDL levels increased (P<0.01), and HDL level decreased (P<0.01). CK, CK-MB, LDH, and MCP-1 levels significantly increased (P<0.05, P<0.01). The mRNA expression of CaMKⅡ and CREB and the protein expression of p-CaMKⅡ and p-CREB decreased in the hippocampal tissue (P<0.05, P<0.01), but those increased in the heart tissue (P<0.01). Compared to the model group, the high, medium, and low dose groups of modified Chaihu Shugansan showed improvements in these abnormalities. The KN93 group had reduced sucrose preference, total activity distance in the open field, number of entries into the center area of the open field, and percentage of entries into the open arms of the elevated plus maze (P<0.01), as well as decreased serum CK, CK-MB, LDH, and MCP-1 levels (P<0.05, P<0.01). KN93 also reduced ST-segment elevation, alleviated the degeneration degree of myocardial fibrosis, and lowered inflammatory cell infiltration. The mRNA expression of CaMKⅡ and CREB and the protein expression of p-CaMKⅡ and p-CREB in both the hippocampal and heart tissue were reduced (P<0.05, P<0.01). The KN93 + high, medium, and low dose groups of modified Chaihu Shugansan showed further improvements in these abnormalities compared to the KN93 group. ConclusionThe modified Chaihu Shugansan exerts antidepressant and myocardial protective effects in rats with myocardial ischemia and depression, possibly related to bidirectional regulation of the CaMKⅡ/CREB signaling pathway, with the high-dose modified Chaihu Shugansan showing the best effects.
5.Prevalence and influencing factors of work-related musculoskeletal disorders of coal miners in a coal mine group
Xiaolan ZHENG ; Liuquan JIANG ; Ying ZHAO ; Hongxia ZHAO ; Fan YANG ; Qiang LI ; Li LI ; Yingjun CHEN ; Qingsong CHEN ; Gaisheng LIU
Journal of Environmental and Occupational Medicine 2025;42(3):278-285
Background The positive rate of work-related musculoskeletal disorders (WMSDs) among coal mine workers remains high, which seriously affects the quality of life of the workers. Objective To estimate the prevalence of WMSDs among coal miners in Shanxi Province and analyze their influencing factors. Methods From May to December 2023,
6.Structural and Spatial Analysis of The Recognition Relationship Between Influenza A Virus Neuraminidase Antigenic Epitopes and Antibodies
Zheng ZHU ; Zheng-Shan CHEN ; Guan-Ying ZHANG ; Ting FANG ; Pu FAN ; Lei BI ; Yue CUI ; Ze-Ya LI ; Chun-Yi SU ; Xiang-Yang CHI ; Chang-Ming YU
Progress in Biochemistry and Biophysics 2025;52(4):957-969
ObjectiveThis study leverages structural data from antigen-antibody complexes of the influenza A virus neuraminidase (NA) protein to investigate the spatial recognition relationship between the antigenic epitopes and antibody paratopes. MethodsStructural data on NA protein antigen-antibody complexes were comprehensively collected from the SAbDab database, and processed to obtain the amino acid sequences and spatial distribution information on antigenic epitopes and corresponding antibody paratopes. Statistical analysis was conducted on the antibody sequences, frequency of use of genes, amino acid preferences, and the lengths of complementarity determining regions (CDR). Epitope hotspots for antibody binding were analyzed, and the spatial structural similarity of antibody paratopes was calculated and subjected to clustering, which allowed for a comprehensively exploration of the spatial recognition relationship between antigenic epitopes and antibodies. The specificity of antibodies targeting different antigenic epitope clusters was further validated through bio-layer interferometry (BLI) experiments. ResultsThe collected data revealed that the antigen-antibody complex structure data of influenza A virus NA protein in SAbDab database were mainly from H3N2, H7N9 and H1N1 subtypes. The hotspot regions of antigen epitopes were primarily located around the catalytic active site. The antibodies used for structural analysis were primarily derived from human and murine sources. Among murine antibodies, the most frequently used V-J gene combination was IGHV1-12*01/IGHJ2*01, while for human antibodies, the most common combination was IGHV1-69*01/IGHJ6*01. There were significant differences in the lengths and usage preferences of heavy chain CDR amino acids between antibodies that bind within the catalytic active site and those that bind to regions outside the catalytic active site. The results revealed that structurally similar antibodies could recognize the same epitopes, indicating a specific spatial recognition between antibody and antigen epitopes. Structural overlap in the binding regions was observed for antibodies with similar paratope structures, and the competitive binding of these antibodies to the epitope was confirmed through BLI experiments. ConclusionThe antigen epitopes of NA protein mainly ditributed around the catalytic active site and its surrounding loops. Spatial complementarity and electrostatic interactions play crucial roles in the recognition and binding of antibodies to antigenic epitopes in the catalytic region. There existed a spatial recognition relationship between antigens and antibodies that was independent of the uniqueness of antibody sequences, which means that antibodies with different sequences could potentially form similar local spatial structures and recognize the same epitopes.
7.Three-dimensional videonystagmography characteristics in patients with benign paroxysmal positional vertigo
Yujin ZHENG ; Keguang CHEN ; Kanglun JIANG ; Feng XU ; Ying QI ; Xinsheng HUANG ; Huaili JIANG
Chinese Journal of Clinical Medicine 2025;32(2):177-182
Objective To analyze the characteristics of nystagmus during the Dix-Hallpike and Roll tests in patients with benign paroxysmal positional vertigo (BPPV) using three-dimensional videonystagmography (3D-VNG), in order to to optimize diagnostic and therapeutic strategies of BPPV. Methods A retrospective analysis was conducted on 68 patients with posterior semicircular canal (PSC)-BPPV and 26 patients with horizontal semicircular canal (HSC)-BPPV. Nystagmus data obtained from 3D-VNG were reviewed for all patients, with a focus on the eye movement components during the Dix-Hallpike test in PSC-BPPV patients and the Roll test in HSC-BPPV patients. The direction and reversal rates of the vertical, horizontal, and torsional components were recorded and analyzed. Results All PSC-BPPV patients exhibited highly consistent three-dimensional nystagmus characteristics during the Dix-Hallpike test: vertical nystagmus was uniformly upward, torsional nystagmus was predominantly clockwise in left-side BPPV patients (17/23) and counterclockwise in right-side BPPV patients (44/45), while the horizontal component was mostly directed contralaterally (50/68); upon transitioning from the head-hanging to the sit-up position, vertical nystagmus components in all patients reversed, and torsional and horizontal nystagmus components reversed in approximately 50.0% or more patients. Among HSC-BPPV patients, right-side BPPV patients all showed right-beating (geotropic) horizontal nystagmus with predominantly upward vertical component (16/19), while most left-side BPPV patients showed left-beating horizontal nystagmus (6/7) with predominantly downward vertical component (6/7). During head rotation toward the healthy side, most (25/26) HSC-BPPV patients exhibited a reversal in the horizontal nystagmus direction, reduced intensity compared to the affected side, with a reversal in vertical components in 3 patients, and atypical torsional components. Conclusions 3D-VNG could precisely quantitative analyze three-dimensional features of nystagmus in BPPV patients, improve diagnostic accuracy in canal and side localization, particularly in PSC-BPPV patients.
8.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
9.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
10.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.

Result Analysis
Print
Save
E-mail