1.Four new sesquiterpenoids from the roots of Atractylodes macrocephala
Gang-gang ZHOU ; Jia-jia LIU ; Ji-qiong WANG ; Hui LIU ; Zhi-Hua LIAO ; Guo-wei WANG ; Min CHEN ; Fan-cheng MENG
Acta Pharmaceutica Sinica 2025;60(1):179-184
The chemical constituents in dried roots of
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Genetic and clinical characteristics of children with RAS-mutated juvenile myelomonocytic leukemia.
Yun-Long CHEN ; Xing-Chen WANG ; Chen-Meng LIU ; Tian-Yuan HU ; Jing-Liao ZHANG ; Fang LIU ; Li ZHANG ; Xiao-Juan CHEN ; Ye GUO ; Yao ZOU ; Yu-Mei CHEN ; Ying-Chi ZHANG ; Xiao-Fan ZHU ; Wen-Yu YANG
Chinese Journal of Contemporary Pediatrics 2025;27(5):548-554
OBJECTIVES:
To investigate the genomic characteristics and prognostic factors of juvenile myelomonocytic leukemia (JMML) with RAS mutations.
METHODS:
A retrospective analysis was conducted on the clinical data of JMML children with RAS mutations treated at the Hematology Hospital of Chinese Academy of Medical Sciences, from January 2008 to November 2022.
RESULTS:
A total of 34 children were included, with 17 cases (50%) having isolated NRAS mutations, 9 cases (27%) having isolated KRAS mutations, and 8 cases (24%) having compound mutations. Compared to children with isolated NRAS mutations, those with NRAS compound mutations showed statistically significant differences in age at onset, platelet count, and fetal hemoglobin proportion (P<0.05). Cox proportional hazards regression model analysis revealed that hematopoietic stem cell transplantation (HSCT) and hepatomegaly (≥2 cm below the costal margin) were factors affecting the survival rate of JMML children with RAS mutations (P<0.05); hepatomegaly was a factor affecting survival in the non-HSCT group (P<0.05).
CONCLUSIONS
Children with NRAS compound mutations have a later onset age compared to those with isolated NRAS mutations. At initial diagnosis, children with NRAS compound mutations have poorer peripheral platelet and fetal hemoglobin levels than those with isolated NRAS mutations. Liver size at initial diagnosis is related to the prognosis of JMML children with RAS mutations. HSCT can improve the prognosis of JMML children with RAS mutations.
Humans
;
Leukemia, Myelomonocytic, Juvenile/therapy*
;
Mutation
;
Male
;
Female
;
Child, Preschool
;
Retrospective Studies
;
Child
;
Infant
;
GTP Phosphohydrolases/genetics*
;
Membrane Proteins/genetics*
;
Adolescent
;
Hematopoietic Stem Cell Transplantation
;
Proportional Hazards Models
;
Proto-Oncogene Proteins p21(ras)/genetics*
;
Prognosis
8.The transcriptomic-based disease network reveals synergistic therapeutic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus.
Qian CHEN ; Shuying ZHANG ; Xuanxi JIANG ; Jie LIAO ; Xin SHAO ; Xin PENG ; Zheng WANG ; Xiaoyan LU ; Xiaohui FAN
Chinese Journal of Natural Medicines (English Ed.) 2025;23(8):997-1008
Coptis chinensis Franch. and Panax ginseng C. A. Mey. are traditional herbal medicines with millennia of documented use and broad therapeutic applications, including anti-diabetic properties. However, the synergistic effect of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng on type 2 diabetes mellitus (T2DM) and its underlying mechanism remain unclear. The research demonstrated that the optimal ratio of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng was 4∶1, exhibiting maximal efficacy in improving insulin resistance and gluconeogenesis in primary mouse hepatocytes. This combination demonstrated significant synergistic effects in improving glucose tolerance, reducing fasting blood glucose (FBG), the weight ratio of epididymal white adipose tissue (eWAT), and the homeostasis model assessment of insulin resistance (HOMA-IR) in leptin receptor-deficient (db/db) mice. Subsequently, a T2DM liver-specific network was constructed based on RNA sequencing (RNA-seq) experiments and public databases by integrating transcriptional properties of disease-associated proteins and protein-protein interactions (PPIs). The network recovery index (NRI) score of the combined treatment group with a 4∶1 ratio exceeded that of groups treated with individual components. The research identified that activated adenosine 5'-monophosphate-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) signaling in the liver played a crucial role in the synergistic treatment of T2DM, as verified by western blot experiment in db/db mice. These findings demonstrate that the 4∶1 combination of total alkaloids from Coptis chinensis and total ginsenosides from Panax ginseng significantly improves insulin resistance and glucose and lipid metabolism disorders in db/db mice, surpassing the efficacy of individual treatments. The synergistic mechanism correlates with enhanced AMPK/ACC signaling pathway activity.
Animals
;
Panax/chemistry*
;
Ginsenosides/administration & dosage*
;
Diabetes Mellitus, Type 2/metabolism*
;
Mice
;
Male
;
Alkaloids/pharmacology*
;
Coptis/chemistry*
;
Drug Synergism
;
Insulin Resistance
;
Mice, Inbred C57BL
;
Humans
;
Transcriptome/drug effects*
;
Blood Glucose/metabolism*
;
Hypoglycemic Agents/administration & dosage*
;
Drugs, Chinese Herbal/administration & dosage*
;
Hepatocytes/metabolism*
9.Analysis of Clinical Efficacy and Central Response Mechanism of Transcutaneous Auricular Vagus Nerve Stimulation for the Treatment of Overweight/Obesity Patients Based on Regional Homogeneity
Wen-Fei FAN ; Cheng-Feng ZHANG ; Shun-Ying ZHAO ; Li-Hong YIN ; Si-Ning YAN ; Meng-Ying LIAO ; Jun CHEN ; Yu CHEN ; Chang-Cai XIE
Journal of Guangzhou University of Traditional Chinese Medicine 2024;41(11):2954-2960
Objective To investigate the therapeutic effect of transcutaneous auricular vagus nerve stimulation(taVNS)on overweight/obesity patients,and to explore its central mechanism.Methods Twenty-six overweight/obesity patients were randomly divided into two groups,12 cases in the taVNS test group(shortened as the taVNS group)and 14 cases in the lifestyle intervention control group(shortened as the control group).The patients in the control group were treated with online lifestyle intervention of calorie-restricted diet(CRD),and the patients in the taVNS group were treated with taVNS on the basis of the intervention for the control group.The taVNS was performed on unilateral acupoints of spleen and endocrine,twice(in the morning and at evening)per day,for five days a week.The treatment for the two groups covered four weeks.The obesity indicators such as body weight,body mass index(BMI)and waist circumference of the patients in the two groups were observed before and after treatment.Moreover,the resting-state cerebral functional magnetic resonance imaging(fMRI)data of the patients were collected after treatment,and then the regulatory effect of taVNS on the regional homogeneity(ReHo)of local cerebral area of the patients was observed.Results(1)During the trial,one case in each group dropped off,and a total of 24 patients(including 13 cases in the control group and 11 cases in the taVNS group)were finally included in the statistical analysis of the observation indicators.(2)After treatment,the body weight,BMI and waist circumference of patients in the taVNS group were decreased compared with those before treatment(P<0.05),while the obesity indicators in the control group only showed a downward trend compared with those before treatment,the differences being not statistically significant(P>0.05).The improvement of the obesity indicators of body weight,BMI,and waist circumference in the taVNS group was significantly superior to that in the control group,and there were statistically significant differences in the post-treatment indicators and in the pre-and post-treatment difference values of the indicators between the two groups(P<0.05 or P<0.01).(3)After treatment,the taVNS group had greater ReHo values in the left prefrontal lobe and medial frontal gyrus than the control group,and the control group had greater ReHo value in the right parietal lobe than the taVNS group,which indicated that compared with the control group,the ReHo of the left prefrontal lobe and medial frontal gyrus in the taVNS group was increased and the ReHo of the right parietal lobe was decreased(Pvoxel<0.001,Pcluster<0.05,corrected by FWE level).Conclusion As a non-invasive treatment method,taVNS exerts certain efficacy for the treatment of overweight/obesity patients.The central response mechanism for treatment of obesity is probably related with the modulation of taVNS on the functional areas of left prefrontal lobe,medial frontal gyrus,and right parietal lobe of the patients.
10.Expert consensus on the evaluation and management of dysphagia after oral and maxillofacial tumor surgery
Xiaoying LI ; Moyi SUN ; Wei GUO ; Guiqing LIAO ; Zhangui TANG ; Longjiang LI ; Wei RAN ; Guoxin REN ; Zhijun SUN ; Jian MENG ; Shaoyan LIU ; Wei SHANG ; Jie ZHANG ; Yue HE ; Chunjie LI ; Kai YANG ; Zhongcheng GONG ; Jichen LI ; Qing XI ; Gang LI ; Bing HAN ; Yanping CHEN ; Qun'an CHANG ; Yadong WU ; Huaming MAI ; Jie ZHANG ; Weidong LENG ; Lingyun XIA ; Wei WU ; Xiangming YANG ; Chunyi ZHANG ; Fan YANG ; Yanping WANG ; Tiantian CAO
Journal of Practical Stomatology 2024;40(1):5-14
Surgical operation is the main treatment of oral and maxillofacial tumors.Dysphagia is a common postoperative complication.Swal-lowing disorder can not only lead to mis-aspiration,malnutrition,aspiration pneumonia and other serious consequences,but also may cause psychological problems and social communication barriers,affecting the quality of life of the patients.At present,there is no systematic evalua-tion and rehabilitation management plan for the problem of swallowing disorder after oral and maxillofacial tumor surgery in China.Combining the characteristics of postoperative swallowing disorder in patients with oral and maxillofacial tumors,summarizing the clinical experience of ex-perts in the field of tumor and rehabilitation,reviewing and summarizing relevant literature at home and abroad,and through joint discussion and modification,a group of national experts reached this consensus including the core contents of the screening of swallowing disorders,the phased assessment of prognosis and complications,and the implementation plan of comprehensive management such as nutrition management,respiratory management,swallowing function recovery,psychology and nursing during rehabilitation treatment,in order to improve the evalua-tion and rehabilitation of swallowing disorder after oral and maxillofacial tumor surgery in clinic.

Result Analysis
Print
Save
E-mail