1.Metabolomics analysis of taxadiene producing yeasts.
Huifang YAN ; Mingzhu DING ; Yingjin YUAN
Chinese Journal of Biotechnology 2014;30(2):223-231
In order to study the inherent difference among terpenes producing yeasts from the point of metabolomics, we selected taxadiene producing yeasts as the model system. The changes of cellular metabolites during fermentation log phase of artificial functional yeasts were determined using metabolomics methods. The results represented that compared to W303-1A as a blank control, the metabolites in glycolysis, tricarboxylic acid cycle (TCA) cycle and several amino acids were influenced. And due to the changes of metabolites, the growth of cells was inhibited to a certain extent. Among the metabolites identified, citric acid content in taxadiene producing yeasts changed the most, the decreasing amplitude reached 90% or more. Therefore, citric acid can be a marker metabolite for the future study of artificial functional yeasts. The metabolomics analysis of taxadiene producing yeasts can provide more information in further studies on optimization of terpenes production in heterologous chassis.
Alkenes
;
metabolism
;
Amino Acids
;
metabolism
;
Citric Acid
;
analysis
;
Citric Acid Cycle
;
Diterpenes
;
metabolism
;
Fermentation
;
Glycolysis
;
Metabolome
;
Metabolomics
;
Yeasts
;
metabolism
2.Influence of preserved brewing yeast strains on fermentation behavior and flocculation capacity.
Chul CHEONG ; Karl WACKERBAUER ; Martin BECKMANN ; Soon Ah KANG
Nutrition Research and Practice 2007;1(4):260-265
Preservation methods on the physiological and brewing technical characters in bottom and top brewing yeast strains were investigated. The preserved yeasts were reactivated after 24 months storage and grown up to stationary phase. The samples of filter paper storage indicated a higher cell growth and viability during propagation than those of nitrogen and lyophilization storage independent on propagation temperature. In addition, the filter paper storage demonstrated a faster absorption of free amino nitrogen and a highest level of higher aliphatic alcohols production during propagation than other preservation methods, which can be attributed to intensive cell growth during propagation. Moreover, the filter paper storage showed a faster accumulation for glycogen and trehalose during propagation, whereas, in particular, lyophilization storage noted a longer adaptation time regarding synthesis of glycogen and trehalose with delayed cell growth. In beer analysis, the filter paper storage formed an increased higher aliphatic alcohols than control. In conclusion, the preservation of filter paper affected positively on yeast growth, viability and beer quality independent on propagation temperature. In addition, in this study, it was obtained that the HICF and Helm-test can be involved as rapid methods for determination of flocculation capacity.
Absorption
;
Alcohols
;
Beer
;
Fermentation*
;
Flocculation*
;
Freeze Drying
;
Glycogen
;
Nitrogen
;
Trehalose
;
Yeasts*
3.Impact of distillage recycling on the glycolysis key enzymes, stress response metabolites and intracelluler components of the self-flocculating yeast.
Lihan ZI ; Chunming ZHANG ; Jiangang REN ; Wenjie YUAN ; Lijie CHEN
Chinese Journal of Biotechnology 2010;26(7):1019-1024
This research aimed to study the effect of distillage recycling on ethanol fermentation, the key glycolytic enzymes and cell composition of the self-flocculating yeast. With the self-flocculating yeast SPSC01 and medium composed of 220 g/L glucose, 8 g/L yeast extract and 6 g/L peptone, continuous ethanol fermentation was carried out at the dilution rate of 0.04 h(-1) with a 1.5 L tank bioreactor. Fermentation broth was collected every 3 days, and ethanol and other volatile byproducts were removed by distillation, but the stillage with high boiling byproducts was recycled to prepare the medium instead of fresh water. The system was run for 20 days, during which ethanol and biomass concentrations in the effluent decreased continuously, indicating the significant inhibition of the high boiling byproducts accumulated within the system. Thus, the activities of the key enzymes of the glycolytic pathway: hexokinase, 6-phosphofructose kinase, and pyruvate kinase were analyzed, and it was observed that all of them were inhibited. Furthermore, the biosynthesis of the stress response metabolites glycerol and trehalose was investigated, and it was found that glycerol production that can protect yeast cells against osmotic pressure stress was enhanced, but trehalose biosynthesis that can protect yeast cells against ethanol inhibition was not improved, correspondingly. And in the meantime, the biosynthesis of the major intracellular components proteins and hydrocarbons was adjusted, correspondingly.
Bioreactors
;
microbiology
;
Ethanol
;
metabolism
;
Fermentation
;
Flocculation
;
Glycerol
;
metabolism
;
Glycolysis
;
Hexokinase
;
metabolism
;
Industrial Microbiology
;
methods
;
Phosphofructokinase-1
;
metabolism
;
Saccharomyces cerevisiae
;
enzymology
;
genetics
;
metabolism
;
Schizosaccharomyces
;
enzymology
;
genetics
;
metabolism
;
Trehalose
;
metabolism
;
Triticum
;
metabolism
;
Zea mays
;
metabolism
4.Progress on biodiesel production with enzymatic catalysis in China.
Tianwei TAN ; Jike LU ; Kaili NIE ; Haixia ZHANG ; Li DENG ; Fang WANG
Chinese Journal of Biotechnology 2010;26(7):903-906
This paper reports the progress of biodiesel production with enzymatic catalysis in Beijing University of Chemical Technology, one of the leaders in biodiesel R & D in China, which includes screening of high-yield lipase production strains, optimization and scale-up of the lipase fermentation process, lipase immobilization, bioreactor development and scale-up, biodiesel separation and purification and the by-product glycerol utilization. Firstly, lipase fermentation was carried out at industrial scale with the 5 m3 stirred tank bioreactor, and the enzyme activity as high as 8 000 IU/mL was achieved by the species Candida sp. 99-125. Then, the lipase was purified and immobilized on textile membranes. Furthermore, biodiesel production was performed in the 5 m3 stirred tank bioreactor with an enzyme dosage as low as 0.42%, and biodiesel that met the German biodiesel standard was produced. And in the meantime, the byproduct glycerol was used for the production of 1,3-propanediol to partly offset the production cost of biodiesel, and 76.1 g/L 1,3-propanediol was obtained in 30 L fermentor with the species Klebsiella pneumoniae.
Biofuels
;
Bioreactors
;
Biotechnology
;
economics
;
methods
;
Candida
;
enzymology
;
Catalysis
;
China
;
Enzymes, Immobilized
;
metabolism
;
Esterification
;
Fermentation
;
Lipase
;
metabolism
;
Plant Oils
;
chemistry
5.Pyruvate Dehydrogenase Kinase as a Potential Therapeutic Target for Malignant Gliomas.
Mithilesh Kumar JHA ; Kyoungho SUK
Brain Tumor Research and Treatment 2013;1(2):57-63
Metabolic aberrations in the form of altered flux through key metabolic pathways are the major hallmarks of several life-threatening malignancies including malignant gliomas. These adaptations play an important role in the enhancement of the survival and proliferation of gliomas at the expense of the surrounding normal/healthy tissues. Recent studies in the field of neurooncology have directly targeted the altered metabolic pathways of malignant tumor cells for the development of anti-cancer drugs. Aerobic glycolysis due to elevated production of lactate from pyruvate regardless of oxygen availability is a common metabolic alteration in most malignancies. Aerobic glycolysis offers survival advantages in addition to generating substrates such as fatty acids, amino acids and nucleotides required for the rapid proliferation of cells. This review outlines the role of pyruvate dehydrogenase kinase (PDK) in gliomas as an inhibitor of pyruvate dehydrogenase that catalyzes the oxidative decarboxylation of pyruvate. An in-depth investigation on the key metabolic enzyme PDK may provide a novel therapeutic approach for the treatment of malignant gliomas.
Amino Acids
;
Decarboxylation
;
Dichloroacetic Acid
;
Fatty Acids
;
Glioma*
;
Glycolysis
;
Lactic Acid
;
Metabolic Networks and Pathways
;
Nucleotides
;
Oxidoreductases*
;
Oxygen
;
Phosphotransferases*
;
Pyruvic Acid*
6.Flexural strength of implant fixed prosthesis using fiber reinforced composite.
Kyung Hee KANG ; Kung Rock KWON ; Sung Bok LEE ; Dae Gyun CHOI
The Journal of Korean Academy of Prosthodontics 2006;44(5):526-536
STATEMENT OF PROBLEM: Use of fiber composite technology as well as development of nonmetal implant prosthesis solved many problems due to metal alloy substructure such as corrosion, toxicity, difficult casting, expensiveness and esthetic limit. After clinical and laboratory test, we could find out that fiber-reinforced composite prostheses have good mechanical properties and FRC can make metal-free implant prostheses successful. PURPOSE: The purpose of this study is to evaluate the flexural strength of implant fixed prosthesis using fiber reinforced composite. MATERIAL AND METHODS: 2-implant fixture were placed in second premolar and second molar area in edentulous mandibular model, and their abutments were placed, and bridge prostheses using gold, PFG, Tescera, and Targis Vectris were fabricated. Tescera was made in 5 different designs with different supplements. Group I was composed by 3 bars with diameter 1.0mm and 5 meshes, 2 bars and 5 meshes for Group II, 1 bar and 5 meshes for Group III, and only 5 meshes were used for Group IV. And Group V is composed by only 3 bars. Resin (Tescera) facing was made to buccal part of pontic of gold bridge. All of gold and PFG bridges were made on one model, 5 Targis Vectris bridges were also made on one model, and 25 Tescera bridges were made on 3 models. Each bridge was attached to the test model by temporary cement and shallow depression was formed near central fossa of the bridge pontic to let 5 mm metal ball not move. Flexual strength was marked in graph by INSTRON. RESULTS: The results of the study are as follows. The initial crack strength was the highest on PFG, and in order of gold bridge, Tescera I, Tescera II, Targis vectris, Tescera IV, Tescera III, and Tescera V. The maximum strength was the highest on gold bridge, and in order of PFG, Tescera I, Tescera IV, Tescera II, Targis vectris, Tescera III, and Tescera V. CONCLUSIONS: The following conclusions were drawn from the results of this study. 1. Flextural strength of implant prosthesis using fiber reinforced composite was higher than average posterior occlusal force. 2. In initial crack strength, Tescera I was stronger than Tescera V, and weaker than PFG. 3. Kinds and number of auxillary components had an effect on maximum strength, and maximum strength was increased as number of auxillary components increased. 4. Maximum strength of Tescera I was higher than Targis vectris, and lower than PFG.
Alloys
;
Bicuspid
;
Bite Force
;
Corrosion
;
Denture, Partial, Fixed
;
Depression
;
Linear Energy Transfer
;
Molar
;
Prostheses and Implants*
7.Process development for continuous ethanol fermentation by the flocculating yeast under stillage backset conditions.
Lihan ZI ; Chenguang LIU ; Fengwu BAI
Chinese Journal of Biotechnology 2014;30(2):310-314
Propionic acid, a major inhibitor to yeast cells, was accumulated during continuous ethanol fermentation from corn meal hydrolysate by the flocculating yeast under stillage backset conditions. Based on its inhibition mechanism in yeast cells, strategies were developed for alleviating this effect. Firstly, high temperature processes such as medium sterilization generated more propionic acid, which should be avoided. Propionic acid was reduced significantly during ethanol fermentation without medium sterilization, and concentrations of biomass and ethanol increased by 59.3% and 7.4%, respectively. Secondly, the running time of stillage backset should be controlled so that propionic acid accumulated would be lower than its half inhibition concentration IC50 (40 mmol/L). Finally, because low pH augmented propionic acid inhibition in yeast cells, a higher pH of 5.5 was validated to be suitable for ethanol fermentation under the stillage backset condition.
Biomass
;
Ethanol
;
metabolism
;
Fermentation
;
Flocculation
;
Propionates
;
chemistry
;
Yeasts
;
metabolism
8.Continuous ethanol fermentation coupled with recycling of yeast flocs.
Bo WANG ; Xu-Meng GE ; Ning LI ; Feng-Wu BAI
Chinese Journal of Biotechnology 2006;22(5):816-820
A continuous ethanol fermentation system composed of three-stage tanks in series coupled with two sedimentation tanks was established. A self-flocculating yeast strain developed by protoplast fusion from Saccharomyces cerevisiae and Schizosaccharomyces pombe was applied. Two-stage enzymatic hydrolysate of corn powder containing 220g/L of reducing sugar, supplemented with 1.5g/L (NH4)2HPO4 and 2.5g/L KH2PO4, was used as the ethanol fermentation substrate and fed into the first fermentor at the dilution rate of 0.057h(-1). The yeast flocs separated by sedimentation were recycled into the first fermentor as two different models: activation-recycle and direct recycle. The quasi-steady states were obtained for both operation models after the fermentation systems experienced short periods of transitions. Activation process helped enhance the performance of ethanol fermentation at the high dilution rates. The broth containing more than 101g/L ethanol, 3.2g/L residual reducing sugar and 7.7g/L residual total sugar was produced. The ethanol productivity was calculated to be 5.77g/(L x h), which increased by more than 70% compared with that achieved in the same tank in series system without recycling of yeast cells.
Biomass
;
Ethanol
;
metabolism
;
Fermentation
;
Flocculation
;
Saccharomyces cerevisiae
;
metabolism
9.Role of the Pyruvate Dehydrogenase Complex in Metabolic Remodeling: Differential Pyruvate Dehydrogenase Complex Functions in Metabolism.
Sungmi PARK ; Jae Han JEON ; Byong Keol MIN ; Chae Myeong HA ; Themis THOUDAM ; Bo Yoon PARK ; In Kyu LEE
Diabetes & Metabolism Journal 2018;42(4):270-281
Mitochondrial dysfunction is a hallmark of metabolic diseases such as obesity, type 2 diabetes mellitus, neurodegenerative diseases, and cancers. Dysfunction occurs in part because of altered regulation of the mitochondrial pyruvate dehydrogenase complex (PDC), which acts as a central metabolic node that mediates pyruvate oxidation after glycolysis and fuels the Krebs cycle to meet energy demands. Fine-tuning of PDC activity has been mainly attributed to post-translational modifications of its subunits, including the extensively studied phosphorylation and de-phosphorylation of the E1α subunit of pyruvate dehydrogenase (PDH), modulated by kinases (pyruvate dehydrogenase kinase [PDK] 1-4) and phosphatases (pyruvate dehydrogenase phosphatase [PDP] 1-2), respectively. In addition to phosphorylation, other covalent modifications, including acetylation and succinylation, and changes in metabolite levels via metabolic pathways linked to utilization of glucose, fatty acids, and amino acids, have been identified. In this review, we will summarize the roles of PDC in diverse tissues and how regulation of its activity is affected in various metabolic disorders.
Acetylation
;
Amino Acids
;
Citric Acid Cycle
;
Diabetes Mellitus, Type 2
;
Fatty Acids
;
Glucose
;
Glycolysis
;
Metabolic Diseases
;
Metabolic Networks and Pathways
;
Metabolism*
;
Mitochondria
;
Neurodegenerative Diseases
;
Obesity
;
Oxidative Phosphorylation
;
Oxidoreductases
;
Phosphoric Monoester Hydrolases
;
Phosphorylation
;
Phosphotransferases
;
Protein Processing, Post-Translational
;
Pyruvate Dehydrogenase Complex*
;
Pyruvic Acid*
10.Recovery of Acute Renal Failure Secondaruy to Ethylene Glycol Intoxicity.
Woon Jeung LEE ; Kyu Nam PARK ; Won Jae LEE ; Eun Young YOO ; Kwan Mo YANG ; Byung Ho NAH ; Tae Wook KWON ; Du Young HWANG ; Hwan YI ; Se Kyung KIM
Journal of the Korean Society of Emergency Medicine 1997;8(4):611-616
Ethylene glycol is a sweet-tasting liquid with industrial use as a solvent or as a starting reagent in chemical processes. Physicians are familiar with ethylene glycol because it is the major component of many antifreeze solutions and is taken in suicide attempts or, more often inadvertency. its metabolites may cause severe intoxication. Unfortunately, its metabolites are highly toxic and require rapid treatment Treatment involves correction of metabolic acidosis, ethanol administration and enhancement of elimination. The most commonly used elimination technique is hemodialysis We describe an 21-year-old man with acute renal failure due to ingestion of antifreeze that contained ethylene glycol. He was transferred to our hospital because of aggressive management The recovery of our patient with severe ethylene glycol intoxication illustrates that aggressive and early treatment can prevent mortality and morbidity.
Acidosis
;
Acute Kidney Injury*
;
Chemical Processes
;
Eating
;
Ethanol
;
Ethylene Glycol*
;
Humans
;
Mortality
;
Renal Dialysis
;
Suicide
;
Young Adult