1.Role of post-translational modification of basic leucine zipper transcription factors in response to abiotic stresses in plants.
Ying LI ; Weidi ZHAO ; Jinghua YANG ; Jiaqi LI ; Songyang HAN ; Yuekun REN ; Changhong GUO
Chinese Journal of Biotechnology 2024;40(1):53-62
Abiotic stresses substantially affect the growth and development of plants. Plants have evolved multiple strategies to cope with the environmental stresses, among which transcription factors play an important role in regulating the tolerance to abiotic stresses. Basic leucine zipper transcription factors (bZIP) are one of the largest gene families. The stability and activity of bZIP transcription factors could be regulated by different post-translational modifications (PTMs) in response to various intracellular or extracellular stresses. This paper introduces the structural feature and classification of bZIP transcription factors, followed by summarizing the PTMs of bZIP transcription factors, such as phosphorylation, ubiquitination and small ubiquitin-like modifier (SUMO) modification, in response to abiotic stresses. In addition, future perspectives were prospected, which may facilitate cultivating excellent stress-resistant crop varieties by regulating the PTMs of bZIP transcription factors.
Basic-Leucine Zipper Transcription Factors/genetics*
;
Protein Processing, Post-Translational
;
Phosphorylation
;
Transcription Factors/genetics*
;
Stress, Physiological/genetics*
2.Advances on BTB protein ubiquitination mediated plant development and stress response.
Tongtong LÜ ; Wenhui YAN ; Yan LIANG ; Yin DING ; Qingxia YAN ; Jinhua LI
Chinese Journal of Biotechnology 2024;40(1):63-80
The BTB (broad-complex, tramtrack, and bric-à-brac) domain is a highly conserved protein interaction motif in eukaryotes. They are widely involved in transcriptional regulation, protein degradation and other processes. Recently, an increasing number of studies have shown that these genes play important roles in plant growth and development, biotic and abiotic stress processes. Here, we summarize the advances of these proteins ubiquitination-mediated development and abiotic stress responses in plants based on the protein structure, which may facilitate the study of this type of gene in plants.
Eukaryota
;
Plant Development/genetics*
;
Proteolysis
;
Ubiquitination
3.Investigating the impact of silencing an RNA-binding protein gene SlRBP1 on tomato photosynthesis through RNA-sequencing analysis.
Xiwen ZHOU ; Liqun MA ; Hongliang ZHU
Chinese Journal of Biotechnology 2024;40(1):150-162
Photosynthesis in plants directly affects the synthesis and accumulation of organic matter, which directly influences crop yield. RNA-binding proteins (RBPs) are involved in the regulation of a variety of physiological functions in plants, while the functions of RBPs in photosynthesis have not been clearly elucidated. To investigate the effect of a glycine-rich RNA-binding protein (SlRBP1) in tomato on plant photosynthesis, a stably inherited SlRBP1 silenced plant in Alisa Craig was obtained by plant tissue culture using artificial small RNA interference. It turns out that the size of the tomato fruit was reduced and leaves significantly turned yellow. Chlorophyll(Chl) content measurement, Chl fluorescence imaging and chloroplast transmission electron microscopy revealed that the chloroplast morphology and structure of the leaves of tomato amiR-SlRBP1 silenced plants were disrupted, and the chlorophyll content was significantly reduced. Measurement of photosynthesis rate of wild-type and amiR-SlRBP1 silenced plants in the same period demonstrated that the photosynthetic rate of these plants was significantly reduced, and analysis of RNA-seq data indicated that silencing of SlRBP1 significantly reduced the expression of photosynthesis-related genes, such as PsaE, PsaL, and PsbY, and affected the yield of tomato fruits through photosynthesis.
RNA
;
Solanum lycopersicum/genetics*
;
Photosynthesis/genetics*
;
Chlorophyll
;
RNA-Binding Proteins/genetics*
4.WNT7A promotes tumorigenesis of head and neck squamous cell carcinoma via activating FZD7/JAK1/STAT3 signaling.
Qingling HUANG ; Yi XIAO ; Ting LAN ; Youguang LU ; Li HUANG ; Dali ZHENG
International Journal of Oral Science 2024;16(1):7-7
Wnt signaling are critical pathway involved in organ development, tumorigenesis, and cancer progression. WNT7A, a member of the Wnt family, remains poorly understood in terms of its role and the underlying molecular mechanisms it entails in head and neck squamous cell carcinoma (HNSCC). According to the Cancer Genome Atlas (TCGA), transcriptome sequencing data of HNSCC, the expression level of WNT7A in tumors was found to be higher than in adjacent normal tissues, which was validated using Real-time RT-PCR and immunohistochemistry. Unexpectedly, overexpression of WNT7A did not activate the canonical Wnt-β-catenin pathway in HNSCC. Instead, our findings suggested that WNT7A potentially activated the FZD7/JAK1/STAT3 signaling pathway, leading to enhanced cell proliferation, self-renewal, and resistance to apoptosis. Furthermore, in a patient-derived xenograft (PDX) tumor model, high expression of WNT7A and phosphorylated STAT3 was observed, which positively correlated with tumor progression. These findings underscore the significance of WNT7A in HNSCC progression and propose the targeting of key molecules within the FZD7/JAK1/STAT3 pathway as a promising strategy for precise treatment of HNSCC.
Animals
;
Humans
;
Squamous Cell Carcinoma of Head and Neck
;
Carcinogenesis/genetics*
;
Cell Transformation, Neoplastic
;
Wnt Signaling Pathway
;
Disease Models, Animal
;
Head and Neck Neoplasms/genetics*
;
Wnt Proteins
;
Frizzled Receptors/genetics*
;
Janus Kinase 1
;
STAT3 Transcription Factor
5.Probiotic supplementation and glomerular filtration rate improvement in chronic kidney disease: A systematic review and meta-analysis
Mark Bennett M. Remora ; Grace D. Juntilla ; Heidii Chua-tan
The Filipino Family Physician 2024;62(2):317-323
BACKGROUND
Chronic kidney disease (CKD) poses a global health threat with significant morbidity and mortality. Despite current therapies, there is a need for innovative interventions to slow CKD progression. Probiotic supplementation shows promise due to its positive effects on gastrointestinal health and inflammation. However, existing research is inconclusive, necessitating a meta-analysis to assess probiotics’ impact on CKD outcomes.
OBJECTIVETo evaluate the existing scientific literature among probiotic supplementation and the improvement in glomerular filtration rate (GFR) among chronic kidney disease (CKD) patients compared to placebo treatment.
METHODSA comprehensive search of electronic databases was conducted to identify relevant studies published up to 2023. Studies that meet the predefined eligibility criteria were included. Data extraction was performed, and methodological quality and risk of bias assessment was conducted for each study. Effect measures, such as mean differences or standardized mean differences, were used to quantify the association between probiotic supplementation and GFR improvement. The random-effects model was applied to estimate the overall effect size, and subgroup analyses were performed to explore potential sources of heterogeneity. Publication bias was assessed, and sensitivity analyses was conducted to evaluate the robustness of the findings.
RESULTSThe meta-analysis encompassed three randomized controlled trials (RCTs) conducted from 2017 to 2023, involving 121 chronic kidney disease (CKD) patients. The analysis focused on the impact of probiotic supplementation on CKD, examining Glomerular Filtration Rate (GFR), Blood Urea Nitrogen (BUN), and Urine Protein Creatinine Ratio (UPCR). While no significant distinctions were found in GFR and BUN changes between probiotics and placebos, there was a statistically significant reduction in UPCR associated with probiotic supplementation in one study. Notably, considerable heterogeneity in GFR and significant heterogeneity in UPCR reduction were observed among the trials. Sensitivity analysis, excluding studies with small sample sizes or high bias risk, remained consistent with overall findings.
CONCLUSIONThe meta-analysis indicated no significant impact of probiotic supplementation on GFR and BUN, but there was a notable reduction in Urine UPCR. The observed heterogeneity among the studies calls for cautious interpretation due to variations in study designs, patient populations, and probiotic formulations. While the results suggest a potential role for probiotics in reducing proteinuria in chronic kidney disease (CKD) patients, the need for further research with larger sample sizes and standardized methodologies is emphasized to establish definitive conclusions.
Human ; Probiotics ; Glomerular Filtration Rate ; Chronic Kidney Diseases ; Renal Insufficiency, Chronic ; Meta-analysis ; Systematic Review
6.USP25 promotes hepatocellular carcinoma progression by interacting with TRIM21 via the Wnt/β-catenin signaling pathway.
Yinghui LIU ; Jingjing MA ; Shimin LU ; Pengzhan HE ; Weiguo DONG
Chinese Medical Journal 2023;136(18):2229-2242
BACKGROUND:
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world. The ubiquitin-specific peptidase 25 (USP25) protein has been reported to participate in the development of several cancers. However, few studies have reported its association with HCC. In this study, we aimed to investigate the function and mechanism of USP25 in the progression of HCC.
METHODS:
We analyzed USP25 protein expression in HCC based on The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) database cohorts. Then, we constructed USP25-overexpressing and USP25-knockdown HepG2, MHCC97H, and L-O2 cells. We detected the biological function of USP25 by performing a series of assays, such as Cell Counting Kit-8 (CCK-8), colony formation, transwell, and wound healing assays. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) analyses were performed to detect the interaction between USP25 and the Wnt/β-catenin signaling pathway. The relationship between USP25 and tripartite motif-containing 21 (TRIM21) was assessed through mass spectrometry and co-immunoprecipitation (Co-IP) analysis. Finally, we constructed a mouse liver cancer model with the USP25 gene deletion to verify in vivo role of USP25.
RESULTS:
USP25 was highly expressed in HCC tissue and HCC cell lines. Importantly, high expression of USP25 in tissues was closely related to a poor prognosis. USP25 knockdown markedly reduced the proliferation, migration, and invasion of HepG2 and MHCC97H cells, whereas USP25 overexpression led to the opposite effects. In addition, we demonstrated that USP25 interacts with TRIM21 to regulate the expression of proteins related to epithelial-mesenchymal transition (EMT; E-cadherin, N-cadherin, and Snail) and the Wnt/β-catenin pathway (β-catenin, Adenomatous polyposis coli, Axin2 and Glycogen synthase kinase 3 beta) and those of their downstream proteins (C-myc and Cyclin D1). Finally, we verified that knocking out USP25 inhibited tumor growth and distant metastasis in vivo .
CONCLUSIONS
In summary, our data showed that USP25 was overexpressed in HCC. USP25 promoted the proliferation, migration, invasion, and EMT of HCC cells by interacting with TRIM21 to activate the β-catenin signaling pathway.
Animals
;
Mice
;
beta Catenin/genetics*
;
Carcinoma, Hepatocellular/pathology*
;
Cell Line, Tumor
;
Cell Movement/genetics*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
Liver Neoplasms/pathology*
;
Ubiquitin Thiolesterase/metabolism*
;
Wnt Signaling Pathway/genetics*
7.Advances in using adaptive laboratory evolution technology for engineering of photosynthetic cyanobacteria.
Jiawei GAO ; Xiaofei ZHU ; Tao SUN ; Lei CHEN ; Weiwen ZHANG
Chinese Journal of Biotechnology 2023;39(8):3075-3094
Cyanobacteria are the only prokaryotes capable of oxygenic photosynthesis, which have potential to serve as "autotrophic cell factories". However, the synthesis of biofuels and chemicals using cyanobacteria as chassis are suffered from poor stress tolerance and low yield, resulting in low economic feasibility for industrial production. Thus, it's urgent to construct new cyanobacterial chassis by means of synthetic biology. In recent years, adaptive laboratory evolution (ALE) has made great achievements in chassis engineering, including optimizing growth rate, increasing tolerance, enhancing substrate utilization and increasing product yield. ALE has also made some progress in improving the tolerance of cyanobacteria to high light intensity, heavy metal ions, high concentrations of salt and organic solvents. However, the engineering efficiency of ALE strategy in cyanobacteria is generally low, and the molecular mechanisms underpinning the tolerance to various stresses have not been fully elucidated. To this end, this review summarizes the ALE-associated technical strategies and their applications in cyanobacteria chassis engineering, following by discussing how to construct larger ALE mutation library, increase mutation frequency of strains and shorten evolution time. Moreover, exploration of the construction principles and strategies for constructing multi-stress tolerant cyanobacteria, and efficient analysis the mutant libraries of evolved strains as well as construction of strains with high yield and strong robustness are discussed, with the aim to facilitate the engineering of cyanobacteria chassis and the application of engineered cyanobacteria in the future.
Technology
;
Photosynthesis/genetics*
;
Cyanobacteria/genetics*
;
Light
;
Biofuels
8.Advances in enzymatic production of L-homophenylalanine.
Dengke GAO ; Wei SONG ; Wanqing WEI ; Kangping HUANG ; Jing WU ; Liming LIU
Chinese Journal of Biotechnology 2023;39(8):3111-3124
L-homophenylalanine (L-HPA) is an important non-natural amino acid that has been used as a key intermediate for the synthesis of Puli drugs for the treatment of hypertension. At present, L-HPA is synthesized using chemical methods, which has the disadvantages of expensive raw materials, tedious steps and serious pollution. Therefore, researchers have conducted in-depth research on the enzymatic production of L-HPA. This review summarizes the research progress on the enzymatic synthesis of L-HPA, including the dehydrogenase process, the transaminase process, the hydantoinase process, and the decarboxylase process, with the hope to facilitate the industrial production of L-HPA.
Amino Acids
;
Environmental Pollution
;
Industry
;
Protein Biosynthesis
9.Characterization the response of Chlamydomonas reinhardtii serine/threonine protein kinase mutant to blue light.
Wangning LI ; Mengjing LIANG ; Ze YANG ; Yanan LI ; Chunhui ZHANG ; Chunli JI ; Runzhi LI ; Song QIN ; Jinai XUE ; Hongli CUI
Chinese Journal of Biotechnology 2023;39(11):4563-4579
In order to investigate the molecular mechanism of silk/threonine protein kinase (STK)-mediated blue light response in the algal Chlamydomonas reinhardtii, phenotype identification and transcriptome analysis were conducted for C. reinhardtii STK mutant strain crstk11 (with an AphvIII box reverse insertion in stk11 gene coding region) under blue light stress. Phenotypic examination showed that under normal light (white light), there was a slight difference in growth and pigment contents between the wild-type strain CC5325 and the mutant strain crstk11. Blue light inhibited the growth and chlorophyll synthesis in crstk11 cells, but significantly promoted the accumulation of carotenoids in crstk11. Transcriptome analysis showed that 860 differential expression genes (DEG) (559 up-regulated and 301 down-regulated) were detected in mutant (STK4) vs. wild type (WT4) upon treatment under high intensity blue light for 4 days. After being treated under high intensity blue light for 8 days, a total of 1 088 DEGs (468 upregulated and 620 downregulated) were obtained in STK8 vs. WT8. KEGG enrichment analysis revealed that compared to CC5325, the crstk11 blue light responsive genes were mainly involved in catalytic activity of intracellular photosynthesis, carbon metabolism, and pigment synthesis. Among them, upregulated genes included psaA, psaB, and psaC, psbA, psbB, psbC, psbD, psbH, and L, petA, petB, and petD, as well as genes encoding ATP synthase α, β and c subunits. Downregulated genes included petF and petJ. The present study uncovered that the protein kinase CrSTK11 of C. reinhardtii may participate in the blue light response of algal cells by mediating photosynthesis as well as pigment and carbon metabolism, providing new knowledge for in-depth analysis of the mechanism of light stress resistance in the algae.
Chlamydomonas reinhardtii/genetics*
;
Photosynthesis/genetics*
;
Plants/metabolism*
;
Protein Kinases
;
Threonine/metabolism*
;
Carbon/metabolism*
;
Serine/metabolism*
10.Effect of Wnt/β-catenin signaling pathway in neural differentiation of human bone marrow mesenchymal stem cells.
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(10):1276-1283
OBJECTIVE:
To explore the effect of basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), and the combination of bFGF and EGF in the neural differentiation of human bone marrow mesenchymal stem cells (hBMSCs), and the role of Wnt/β-catenin signaling pathway in this process.
METHODS:
The identified 4th-generation hBMSCs were divided into five groups according to different induction conditions, namely control group (group A), EGF induction group (group B), bFGF induction group (group C), EGF and bFGF combined induction group (group D), and EGF, bFGF, and Dickkopf-related protein 1 (DKK-1) combined induction group (group E). After 7 days of continuous induction, the cell morphology was observed by inverted fluorescence phase contrast microscopy, levels of genes that were related to neural cells [Nestin, neuron-specific enolase (NSE), microtubule-associated protein 2 (MAP-2), and glial fibrillary acidic protein (GFAP)] and key components of the Wnt/β-catenin signaling pathway (β-catenin and Cyclin D1) were detected by RT-PCR, and the levels of proteins that were related to neural cells (Nestin and GFAP) as well as genes that were involved in Wnt/β-catenin signaling pathway [β-catenin, phosphorylation β-catenin (P-β-catenin), Cytoplasmic β-catenin, and Nuclear β-catenin] were explored by cellular immunofluorescence staining and Western blot.
RESULTS:
When compared to groups A and B, the typical neuro-like cell changes were observed in groups C-E, and most obviously in group D. RT-PCR showed that the relative expressions of Nestin, NSE, and MAP-2 genes in groups C-E, the relative expressions of GFAP gene in groups D and E, the relative expression of NSE gene in group B, the relative expressions of β-catenin gene in groups C and D, and the relative expressions of Cyclin D1 gene in groups B-D significantly increased when compared with group A ( P<0.05). Compared with group E, the relative expressions of Nestin, NSE, MAP-2, GFAP, β-catenin, and CyclinD1 genes significantly increased in group D ( P<0.05); compared with group C, the relative expression of Nestin gene in group D significantly decreased ( P<0.05), while NSE, MAP-2, and GFAP genes significantly increased ( P<0.05). The cellular immunofluorescence staining showed that the ratio of NSE- and GFAP-positive cells significantly increased in groups C-E than in group A, in group D than in groups C and E ( P<0.05). Western blot assay showed that the relative expression of NSE protein was significantly higher in groups C and D than in group A and in group D than in groups C and E ( P<0.05). In addition, the relative expression of GFAP protein was significantly higher in groups C-E than in group A and in group D than in group E ( P<0.05). Besides, the relative expressions of β-catenin, Cytoplasmic β-catenin, Nuclear β-catenin, and the ratio of Nuclear β-catenin to Cytoplasmic β-catenin were significantly higher in groups C and D than in group A and in group D than in group E ( P<0.05), whereas the relative expression of P-β-catenin protein was significantly lower in groups C and D than in group A and in group D than in group E ( P<0.05).
CONCLUSION
Different from EGF, bFGF can induce neural differentiation of hBMSCs. In addition, EGF can enhance the hBMSCs neural differentiation of bFGF, while the Wnt/β-catenin signaling pathway may play a positive regulatory role in these processes.
Humans
;
beta Catenin/metabolism*
;
Bone Marrow Cells
;
Cell Differentiation
;
Cells, Cultured
;
Epidermal Growth Factor/metabolism*
;
Mesenchymal Stem Cells
;
Wnt Signaling Pathway
;
Neurons
;
Fibroblast Growth Factor 2/metabolism*


Result Analysis
Print
Save
E-mail