2.Taiwan Association for the Study of the Liver-Taiwan Society of Cardiology Taiwan position statement for the management of metabolic dysfunction- associated fatty liver disease and cardiovascular diseases
Pin-Nan CHENG ; Wen-Jone CHEN ; Charles Jia-Yin HOU ; Chih-Lin LIN ; Ming-Ling CHANG ; Chia-Chi WANG ; Wei-Ting CHANG ; Chao-Yung WANG ; Chun-Yen LIN ; Chung-Lieh HUNG ; Cheng-Yuan PENG ; Ming-Lung YU ; Ting-Hsing CHAO ; Jee-Fu HUANG ; Yi-Hsiang HUANG ; Chi-Yi CHEN ; Chern-En CHIANG ; Han-Chieh LIN ; Yi-Heng LI ; Tsung-Hsien LIN ; Jia-Horng KAO ; Tzung-Dau WANG ; Ping-Yen LIU ; Yen-Wen WU ; Chun-Jen LIU
Clinical and Molecular Hepatology 2024;30(1):16-36
Metabolic dysfunction-associated fatty liver disease (MAFLD) is an increasingly common liver disease worldwide. MAFLD is diagnosed based on the presence of steatosis on images, histological findings, or serum marker levels as well as the presence of at least one of the three metabolic features: overweight/obesity, type 2 diabetes mellitus, and metabolic risk factors. MAFLD is not only a liver disease but also a factor contributing to or related to cardiovascular diseases (CVD), which is the major etiology responsible for morbidity and mortality in patients with MAFLD. Hence, understanding the association between MAFLD and CVD, surveillance and risk stratification of MAFLD in patients with CVD, and assessment of the current status of MAFLD management are urgent requirements for both hepatologists and cardiologists. This Taiwan position statement reviews the literature and provides suggestions regarding the epidemiology, etiology, risk factors, risk stratification, nonpharmacological interventions, and potential drug treatments of MAFLD, focusing on its association with CVD.
3.Artificial intelligence predicts direct-acting antivirals failure among hepatitis C virus patients: A nationwide hepatitis C virus registry program
Ming-Ying LU ; Chung-Feng HUANG ; Chao-Hung HUNG ; Chi‐Ming TAI ; Lein-Ray MO ; Hsing-Tao KUO ; Kuo-Chih TSENG ; Ching-Chu LO ; Ming-Jong BAIR ; Szu-Jen WANG ; Jee-Fu HUANG ; Ming-Lun YEH ; Chun-Ting CHEN ; Ming-Chang TSAI ; Chien-Wei HUANG ; Pei-Lun LEE ; Tzeng-Hue YANG ; Yi-Hsiang HUANG ; Lee-Won CHONG ; Chien-Lin CHEN ; Chi-Chieh YANG ; Sheng‐Shun YANG ; Pin-Nan CHENG ; Tsai-Yuan HSIEH ; Jui-Ting HU ; Wen-Chih WU ; Chien-Yu CHENG ; Guei-Ying CHEN ; Guo-Xiong ZHOU ; Wei-Lun TSAI ; Chien-Neng KAO ; Chih-Lang LIN ; Chia-Chi WANG ; Ta-Ya LIN ; Chih‐Lin LIN ; Wei-Wen SU ; Tzong-Hsi LEE ; Te-Sheng CHANG ; Chun-Jen LIU ; Chia-Yen DAI ; Jia-Horng KAO ; Han-Chieh LIN ; Wan-Long CHUANG ; Cheng-Yuan PENG ; Chun-Wei- TSAI ; Chi-Yi CHEN ; Ming-Lung YU ;
Clinical and Molecular Hepatology 2024;30(1):64-79
Background/Aims:
Despite the high efficacy of direct-acting antivirals (DAAs), approximately 1–3% of hepatitis C virus (HCV) patients fail to achieve a sustained virological response. We conducted a nationwide study to investigate risk factors associated with DAA treatment failure. Machine-learning algorithms have been applied to discriminate subjects who may fail to respond to DAA therapy.
Methods:
We analyzed the Taiwan HCV Registry Program database to explore predictors of DAA failure in HCV patients. Fifty-five host and virological features were assessed using multivariate logistic regression, decision tree, random forest, eXtreme Gradient Boosting (XGBoost), and artificial neural network. The primary outcome was undetectable HCV RNA at 12 weeks after the end of treatment.
Results:
The training (n=23,955) and validation (n=10,346) datasets had similar baseline demographics, with an overall DAA failure rate of 1.6% (n=538). Multivariate logistic regression analysis revealed that liver cirrhosis, hepatocellular carcinoma, poor DAA adherence, and higher hemoglobin A1c were significantly associated with virological failure. XGBoost outperformed the other algorithms and logistic regression models, with an area under the receiver operating characteristic curve of 1.000 in the training dataset and 0.803 in the validation dataset. The top five predictors of treatment failure were HCV RNA, body mass index, α-fetoprotein, platelets, and FIB-4 index. The accuracy, sensitivity, specificity, positive predictive value, and negative predictive value of the XGBoost model (cutoff value=0.5) were 99.5%, 69.7%, 99.9%, 97.4%, and 99.5%, respectively, for the entire dataset.
Conclusions
Machine learning algorithms effectively provide risk stratification for DAA failure and additional information on the factors associated with DAA failure.