1.Spectrum analysis for assessing red blood cell aggregation using high-frequency ultrasound array transducer.
Biomedical Engineering Letters 2017;7(4):273-279
The purpose of this study is to investigate a spectrum analysis technique for detecting and monitoring red blood cell (RBC) aggregation using a high-frequency array transducer. To assess the feasibility of this approach, the backscattered radio-frequency signal from non-aggregated and aggregated RBC samples with two hematocrit levels were acquired by using a 30-MHz linear array transducer and analyzed in frequency domain. Three parameters such as spectral slope, midband fit and Y intercept were extracted in a static condition. Fresh porcine blood was used and degrees of aggregation were changed by diluting plasma concentration. From the experiments, it was demonstrated that the spectral slope related to a size of scatterer progressively declined as the level of aggregation increased; its mean values at hematocrit of 40% were 1.10 and −0.22 dB/MHz for RBCs suspended in isotonic phosphate buffered saline and solution with 70% plasma concentrations, respectively. For the midband fit and Y intercept, the mean values were increased by 9.1 and 46.4 dB, respectively. These results indicated that the spectrum analysis technique is useful for monitoring RBC aggregation and can be potentially developed for assessing aggregation in clinical applications.
Erythrocytes*
;
Hematocrit
;
Plasma
;
Spectrum Analysis*
;
Transducers*
;
Ultrasonography*
2.Profiling of RNA-binding Proteins Interacting With Glucagon and Adipokinetic Hormone mRNAs
Seungbeom KO ; Eunbyul YEOM ; Yoo Lim CHUN ; Hyejin MUN ; Marina HOWARD-MCGUIRE ; Nathan T. MILLISON ; Junyang JUNG ; Kwang-Pyo LEE ; Changhan LEE ; Kyu-Sun LEE ; Joe R. DELANEY ; Je-Hyun YOON
Journal of Lipid and Atherosclerosis 2022;11(1):55-72
Objective:
Glucagon in mammals and its homolog (adipokinetic hormone [AKH] in Drosophila melanogaster) are peptide hormones which regulate lipid metabolism by breaking down triglycerides. Although regulatory mechanisms of glucagon and Akh expression have been widely studied, post-transcriptional gene expression of glucagon has not been investigated thoroughly. In this study, we aimed to profile proteins binding with Gcg messenger RNA (mRNA) in mouse and Akh mRNA in Drosophila.
Methods:
Drosophila Schneider 2 (S2) and mouse 3T3-L1 cell lysates were utilized for affinity pull down of Akh and Gcg mRNA respectively using biotinylated anti-sense DNA oligoes against target mRNAs. Mass spectrometry and computational network analysis revealed mRNA-interacting proteins residing in functional proximity.
Results:
We observed that 1) 91 proteins interact with Akh mRNA from S2 cell lysates, 2) 34 proteins interact with Gcg mRNA from 3T3-L1 cell lysates. 3) Akh mRNA interactome revealed clusters of ribosomes and known RNA-binding proteins (RBPs). 4) Gcg mRNA interactome revealed mRNA-binding proteins including Plekha7, zinc finger protein, carboxylase, lipase, histone proteins and a cytochrome, Cyp2c44. 5) Levels of Gcg mRNA and its interacting proteins are elevated in skeletal muscles isolated from old mice compared to ones from young mice.
Conclusion
Akh mRNA in S2 cells are under active translation in a complex of RBPs and ribosomes. Gcg mRNA in mouse precursor adipocyte is in a condition distinct from Akh mRNA due to biochemical interactions with a subset of RBPs and histones. We anticipate that our study contributes to investigating regulatory mechanisms of Gcg and Akh mRNA decay, translation, and localization.