1.Chemical constituents of Swertia macrosperma.
Hongling WANG ; Changan GENG ; Xuemei ZHANG ; Yunbao MA ; Zhiyong JIANG ; Jijun CHEN
China Journal of Chinese Materia Medica 2010;35(23):3161-3164
OBJECTIVETo study the chemical constituents of Swertia macrosperma.
METHODThe air-dried whole plants of Swertia macrosperma were extracted with boiling water. The extract was concentrated to a small amount of volume and extracted with petroleum ether, EtOAc and n-BuOH, successively. The compounds were isolated and purified by column chromatography from the EtOAc fraction, and identified based on spectral analyses (MS, 1H-NMR, 13C-NMR).
RESULTThirteen compounds were isolated from S. macrosperma, and were characterized as norbellidifolin (1), 1-hydroxy-3,7, 8-trimethoxy-xanthone (2), norswertianolin (3), swertianolin (4), 1,3,7,8-tetrahydroxyxanthone-8-O-beta-D-glucopyranoside (5), swertiamatin (6), decentapicrin (7), coniferl aldehyde (8), sinapaldehyde (9), balanophonin (10), together with beta-sitosterol, daucosterol, and oleanolic acid .
CONCLUSIONCompounds 2, 4-10 were obtained from Swertia macrosperma for the first time.
Plant Extracts ; analysis ; isolation & purification ; Swertia ; chemistry
2.Artemdubinoids A-N: novel sesquiterpenoids with antihepatoma cytotoxicity from Artemisia dubia.
Zhen GAO ; Tianze LI ; Yunbao MA ; Xiaoyan HUANG ; Changan GENG ; Xuemei ZHANG ; Jijun CHEN
Chinese Journal of Natural Medicines (English Ed.) 2023;21(12):902-915
In pursuit of effective agents for hepatocellular carcinoma derived from the Artemisia species, this study built upon initial findings that an ethanol (EtOH) extract and ethyl acetate (EtOAc) fraction of the aerial parts of Artemisia dubia Wall. ex Bess. exhibited cytotoxicity against HepG2 cells with inhibitory rates of 57.1% and 84.2% (100 μg·mL-1), respectively. Guided by bioactivity, fourteen previously unidentified sesquiterpenes, artemdubinoids A-N (1-14), were isolated from the EtOAc fraction. Their structural elucidation was achieved through comprehensive spectroscopic analyses and corroborated by the comparison between the experimental and calculated ECD spectra. Single crystal X-ray diffraction provided definitive structure confirmation for artemdubinoids A, D, F, and H. Artemdubinoids A and B (1-2) represented unique sesquiterpenes featuring a 6/5-fused bicyclic carbon scaffold, and their putative biosynthetic pathways were discussed; artemdubinoid C (3) was a novel guaianolide derivative that might be formed by the [4 + 2] Diels-Alder reaction; artemdubinoids D and E (4-5) were rare 1,10-seco-guaianolides; artemdubinoids F-K (6-11) were chlorine-containing guaianolides. Eleven compounds exhibited cytotoxicity against three human hepatoma cell lines (HepG2, Huh7, and SK-Hep-1) with half-maximal inhibitory concentration (IC50) values spanning 7.5-82.5 μmol·L-1. Artemdubinoid M (13) exhibited the most active cytotoxicity with IC50 values of 14.5, 7.5 and 8.9 μmol·L-1 against the HepG2, Huh7, and SK-Hep-1 cell lines, respectively, which were equivalent to the positive control, sorafenib.
Humans
;
Artemisia/chemistry*
;
Sesquiterpenes/chemistry*
;
Cell Line
;
Hep G2 Cells
;
Crystallography, X-Ray
;
Molecular Structure
3.New guaiane-type sesquiterpenoid dimers from
Lihua SU ; Xintian ZHANG ; Yunbao MA ; Changan GENG ; Xiaoyan HUANG ; Jing HU ; Tianze LI ; Shuang TANG ; Cheng SHEN ; Zhen GAO ; Xuemei ZHANG ; Ji-Jun CHEN
Acta Pharmaceutica Sinica B 2021;11(6):1648-1666
Leading by cytotoxicity against HepG2 cells, bioactivity-guided fractionation of the EtOAc fraction from