1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Establishment and application of a rapid high-throughput detection method for Huanglongbing.
Qin YUAN ; Zhi-Peng LI ; Tie-Lin WANG ; Ting DONG ; Yu-Wen YANG ; Wei GUAN ; Ting-Chang ZHAO
China Journal of Chinese Materia Medica 2025;50(7):1735-1740
The dried mature peel of Citrus reticulata, a plant in the Rutaceae family and its cultivated varieties, is a commonly used Chinese medicinal material known as Chenpi(Citri Reticulatae Pericarpium). It is rich in nutritional components and medicinal value, with pharmacological effects including relieving cough and eliminating phlegm, strengthening the spleen and drying dampness, protecting the liver and benefiting the stomach, tonifying Qi, and calming the mind. Huanglongbing(HLB), also known as Citrus Huanglongbing, is a destructive disease in citrus production that seriously threatens the development of the citrus industry. HLB causes symptoms such as the inability of Rutaceae plants to produce mature fruit, gradual weakening of the tree, and eventual death, posing a significant threat to the yield and quality of Chenpi. Due to the uneven distribution of the HLB pathogen in infected plants, accurate detection of the pathogen requires the collection of a large number of plant samples. Current sample pretreatment methods, such as traditional extraction methods and commercial extraction kits, are time-consuming and involve multiple steps, which significantly increase the difficulty and workload of HLB diagnosis and have become a bottleneck in HLB detection. In this study, a rapid high-throughput detection method combining alkali lysis and TaqMan qPCR was developed. This method allows the pretreatment of multiple samples within 5 min, and the entire detection process can be completed within 45 min, with a detection limit of 6.67 fg·μL~(-1). The alkali lysis method and commercial kits were used for parallel detection of field-collected citrus samples, and the results showed no significant difference. The sample pretreatment method established in this study is characterized by low cost, simplicity, and high efficiency. Combined with TaqMan qPCR, it can provide technical support for early and on-site diagnosis of HLB. This method is of great significance for disease prevention and control in the citrus industry and is expected to help improve the yield and quality of citrus medicinal materials.
Citrus/microbiology*
;
Plant Diseases/microbiology*
;
Rhizobiaceae/physiology*
;
High-Throughput Screening Assays/methods*
;
Liberibacter/physiology*
7.Application of 3D-printed auxiliary guides in adolescent scoliosis surgery.
Dong HOU ; Jian-Tao WEN ; Chen ZHANG ; Jin HUANG ; Chang-Quan DAI ; Kai LI ; Han LENG ; Jing ZHANG ; Shao-Bo YANG ; Xiao-Juan CUI ; Juan WANG ; Xiao-Yun YUAN
China Journal of Orthopaedics and Traumatology 2025;38(11):1119-1125
OBJECTIVE:
To investigate the accuracy and safety of pedicle screw placement using 3D-printed auxiliary guides in scoliosis correction surgery for adolescents.
METHODS:
A retrospective analysis was conducted on the clinical data of 51 patients who underwent posterior scoliosis correction surgery from January 2020 to March 2023. Among them, there were 35 cases of adolescent idiopathic scoliosis and 16 cases of congenital scoliosis. The patients were divided into two groups based on the auxiliary tool used:the 3D-printed auxiliary guide screw placement group (3D printing group) and the free-hand screw placement group (free-hand group, without auxiliary tools). The 3D printing group included 32 patients (12 males and 20 females) with an average age of (12.59±2.60) years;the free-hand group included 19 patients (7 males and 12 females) with an average age of (14.58±3.53) years. The two groups were compared in terms of screw placement accuracy and safety, spinal correction rate, intraoperative blood loss, number of intraoperative fluoroscopies, operation time, hospital stay, and preoperative and last follow-up scores of the Scoliosis Research Society-22 (SRS-22) questionnaire.
RESULTS:
A total of 707 pedicle screws were placed in the two groups, with 441 screws in the 3D printing group and 266 screws in the free-hand group. All patients in both groups successfully completed the surgery. There was a statistically significant difference in operation time between the two groups (P<0.05). The screw placement accuracy rate of the 3D printing group was 95.46% (421/441), among which the Grade A placement rate was 89.34% (394/441);the screw placement accuracy rate of the free-hand group was 86.47% (230/266), with a Grade A placement rate of 73.31% (195/266). There were statistically significant differences in the accuracy of Grade A, B, and C screw placements between the two groups (P<0.05), while no statistically significant differences were observed in intraoperative blood loss, number of fluoroscopies, correction rate, or hospital stay (P>0.05). In the SRS-22 questionnaire scores, the scores of functional status and activity ability, self-image, mental status, and pain of patients in each group at the last follow-up were significantly improved compared with those before surgery (P<0.05), but there were no statistically significant differences in all scores between the two groups (P>0.05).
CONCLUSION
In scoliosis correction surgery, compared with traditional free-hand screw placement, the use of 3D-printed auxiliary guides for screw placement significantly improves the accuracy and safety of screw placement and shortens the operation time.
Humans
;
Male
;
Scoliosis/surgery*
;
Female
;
Adolescent
;
Printing, Three-Dimensional
;
Retrospective Studies
;
Pedicle Screws
;
Child
8.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
9.A single-center study on the safety and effectiveness of a novel non-implant interatrial shunt device
San-Shuai CHANG ; Xin-Min LIU ; Zheng-Ming JIANG ; Yu-Tong KE ; Qian ZHANG ; Qiang LÜ ; Xin DU ; Jian-Zeng DONG ; Guang-Yuan SONG
Chinese Journal of Interventional Cardiology 2024;32(8):425-433
Objective To preliminarily evaluate the safety and effectiveness of a novel non-implantable atrial shunt device based on radiofrequency ablation for the treatment of chronic heart failure(CHF).Methods This was a prospective single-arm study.From January 2023 to December 2023,five eligible CHF patients were consecutively enrolled at Beijing Anzhen Hospital,Capital Medical University,and underwent inter-atrial shunt using Shenzhen Betterway atrial shunt device.Pulmonary capillary wedge pressure(PCWP),right atrial pressure(RAP),pulmonary artery pressure(PAP),total pulmonary resistance(TPR),pulmonary vascular resistance(PVR),and pulmonary/systemic blood flow ratio(Qp/Qs)were measured using right heart catheterization before and immediately after procedure.Patients were followed up for 90 days,and echocardiography,right heart catheterization,and cardiac functional indicators were evaluated.The primary endpoint was procedural success.Secondary endpoints included clinical success,echocardiographic changes,6-minute walk distance(6MWD)changes,New York Heart Association(NYHA)class changes,Kansas city cardiomyopathy questionnaire(KCCQ)score changes,and amino-terminal probrain natriuretic peptide(NT-proBNP)level changes at 90 days.The safety endpoint was major cardiovascular and cerebrovascular adverse events and device-related adverse events.Results All five patients successfully achieved left-to-right atrial shunt.Compared with baseline,PCWP decreased significantly immediately after procedure in all five patients,with a procedural success rate of 100%.There were no significant changes in RAP,PAP,TPR,and PVR before and immediately after procedure.After 90 days follow-up,four patients had persistent left-to-right atrial shunt,and PCWP was significantly lower than baseline,with a clinical success rate of 80%.Compared with baseline,LVEF increased,left ventricular end-diastolic diameter decreased,and tricuspid annular plane systolic excursion and right ventricular fractional area change were not impaired in all five patients at 90 days.KCCQ scores and 6MWT improved,NT-proBNP decreased,and NYHA class did not change significantly.There were no deaths,rehospitalizations for heart failure,stroke-related adverse events,or device-related adverse events during the follow-up.Conclusions The novel non-implantable atrial shunt catheter can safely and effectively improve hemodynamic,echocardiographic,and cardiac functional indicators in patients with heart failure.However,larger-scale clinical studies are still needed to validate its long-term clinical effectiveness.
10.The progress and implications of interatrial shunt
San-Shuai CHANG ; Xin-Min LIU ; Zheng-Ming JIANG ; Wei MA ; Jian-Zeng DONG ; Guang-Yuan SONG
Chinese Journal of Interventional Cardiology 2024;32(8):463-467
Despite significant advancements in treatments for heart failure,the overall prognosis for patients remains poor.Hemodynamic abnormalities in heart failure manifest as elevated left atrial pressure and pulmonary congestion.Previous studies have shown that reducing left atrial pressure can improve symptoms and prognosis for heart failure patients,suggesting that left-sided heart overload may be a potential target for heart failure treatment.Atrial shunting procedures aim to create a stable and controlled left-to-right intracardiac shunt,restoring the decompensated left heart volume and pressure load in heart failure patients to a compensatory state,thereby improving heart failure symptoms and prognosis.Currently,this treatment is still in the clinical research stage globally.Existing data indicate that atrial shunting procedures can lower left atrial pressure at rest or during exercise in heart failure patients,improve pulmonary congestion,enhance patients'exercise tolerance,and clinical cardiac function.However,no studies have yet confirmed that it can improve clinical endpoints such as rehospitalization and mortality due to heart failure.Future research will focus on identifying heart failure patients who may benefit from atrial shunting,with assessments of heart failure etiology,right heart function,and reversibility of pulmonary vascular resistance,as well as heart failure classification based on ejection fraction,serving as potential key factors for patient selection.

Result Analysis
Print
Save
E-mail