1.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
2.Research progress in chemical constituents and pharmacological activities of Abelmoschi Corolla and prediction of its quality markers.
Shi-Han GUAN ; Chang LIU ; Xiao-Tong YAN ; Jin-Wei HAN ; Feng-Ting YIN ; Hui SUN ; Guang-Li YAN ; Ling KONG ; Ying HAN ; Xi-Jun WANG
China Journal of Chinese Materia Medica 2025;50(4):908-921
Abelmoschi Corolla, the dried corolla of Abelmoschus manihot, has anti-inflammatory, antioxidant, and anti-fibrosis activities. Its chemical constituents mainly include flavonoids, organic acids, steroids, and polysaccharides. This study reviewed the research progress in the chemical constituents and pharmacological activities of Abelmoschi Corolla in recent 20 years. According to the concept of quality marker(Q-marker), the Q-markers of Abelmoschi Corolla were predicted from plant phylogeny, chemical constituent specificity, traditional efficacy, chemical constituent measurability, and absorbed constituents. The primary Q-markers for Abelmoschi Corolla were anticipated to include quercetin-3'-O-β-D-glucopyranoside, gossypetin-8-O-β-D-glucuronide, isoquercetin, myricetin,quercetin, and hyperoside, with the aim of providing reference data for improving the quality evaluation system of Abelmoschi Corolla.
Abelmoschus/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Flowers/chemistry*
;
Humans
;
Animals
;
Quality Control
;
Flavonoids/chemistry*
3.Mechanism of Euphorbiae Ebracteolatae Radix processed by milk in reducing intestinal toxicity.
Chang-Li SHEN ; Hao WU ; Hong-Li YU ; Hong-Mei WEN ; Xiao-Bing CUI ; Hui-Min BIAN ; Tong-la-Ga LI ; Min ZENG ; Yan-Qing XU ; Yu-Xin GU
China Journal of Chinese Materia Medica 2025;50(12):3204-3213
This study aimed to investigate the correlation between changes in intestinal toxicity and compositional alterations of Euphorbiae Ebracteolatae Radix(commonly known as Langdu) before and after milk processing, and to explore the detoxification mechanism of milk processing. Mice were intragastrically administered the 95% ethanol extract of raw Euphorbiae Ebracteolatae Radix, milk-decocted(milk-processed), and water-decocted(water-processed) Euphorbiae Ebracteolatae Radix. Fecal morphology, fecal water content, and the release levels of inflammatory cytokines tumor necrosis factor-α(TNF-α) and interleukin-1β(IL-1β) in different intestinal segments were used as indicators to evaluate the effects of different processing methods on the cathartic effect and intestinal inflammatory toxicity of Euphorbiae Ebracteolatae Radix. LC-MS/MS was employed to analyze the small-molecule components in the raw product, the 95% ethanol extract of the milk-processed product, and the milky waste(precipitate) formed during milk processing, to assess the impact of milk processing on the chemical composition of Euphorbiae Ebracteolatae Radix. The results showed that compared with the blank group, both the raw and water-processed Euphorbiae Ebracteolatae Radix significantly increased the fecal morphology score, fecal water content, and the release levels of TNF-α and IL-1β in various intestinal segments(P<0.05). Compared with the raw group, all indicators in the milk-processed group significantly decreased(P<0.05), while no significant differences were observed in the water-processed group, indicating that milk, as an adjuvant in processing, plays a key role in reducing the intestinal toxicity of Euphorbiae Ebracteolatae Radix. Mass spectrometry results revealed that 29 components were identified in the raw product, including 28 terpenoids and 1 acetophenone. The content of these components decreased to varying extents after milk processing. A total of 28 components derived from Euphorbiae Ebracteolatae Radix were identified in the milky precipitate, of which 27 were terpenoids, suggesting that milk processing promotes the transfer of toxic components from Euphorbiae Ebracteolatae Radix into milk. To further investigate the effect of milk adjuvant processing on the toxic terpenoid components of Euphorbiae Ebracteolatae Radix, transmission electron microscopy(TEM) was used to observe the morphology of self-assembled casein micelles(the main protein in milk) in the milky precipitate. The micelles formed in casein-terpenoid solutions were characterized using particle size analysis, fluorescence spectroscopy, ultraviolet spectroscopy, and Fourier-transform infrared(FTIR) spectroscopy. TEM observations confirmed the presence of casein micelles in the milky precipitate. Characterization results showed that with increasing concentrations of toxic terpenoids, the average particle size of casein micelles increased, fluorescence intensity of the solution decreased, the maximum absorption wavelength in the UV spectrum shifted, and significant changes occurred in the infrared spectrum, indicating that interactions occurred between casein micelles and toxic terpenoid components. These findings indicate that the cathartic effect of Euphorbiae Ebracteolatae Radix becomes milder and its intestinal inflammatory toxicity is reduced after milk processing. The detoxification mechanism is that terpenoid components in Euphorbiae Ebracteolatae Radix reassemble with casein in milk to form micelles, promoting the transfer of some terpenoids into the milky precipitate.
Animals
;
Mice
;
Milk/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Male
;
Tumor Necrosis Factor-alpha/immunology*
;
Intestines/drug effects*
;
Interleukin-1beta/immunology*
;
Tandem Mass Spectrometry
;
Female
4.Prognostic value of quantitative flow ratio measured immediately after percutaneous coronary intervention for chronic total occlusion.
Zheng QIAO ; Zhang-Yu LIN ; Qian-Qian LIU ; Rui ZHANG ; Chang-Dong GUAN ; Sheng YUAN ; Tong-Qiang ZOU ; Xiao-Hui BIAN ; Li-Hua XIE ; Cheng-Gang ZHU ; Hao-Yu WANG ; Guo-Feng GAO ; Ke-Fei DOU
Journal of Geriatric Cardiology 2025;22(4):433-442
BACKGROUND:
The clinical impact of post-percutaneous coronary intervention (PCI) quantitative flow ratio (QFR) in patients treated with PCI for chronic total occlusion (CTO) was still undetermined.
METHODS:
All CTO vessels treated with successful anatomical PCI in patients from PANDA III trial were retrospectively measured for post-PCI QFR. The primary outcome was 2-year vessel-oriented composite endpoints (VOCEs, composite of target vessel-related cardiac death, target vessel-related myocardial infarction, and ischemia-driven target vessel revascularization). Receiver operator characteristic curve analysis was conducted to identify optimal cutoff value of post-PCI QFR for predicting the 2-year VOCEs, and all vessels were stratified by this optimal cutoff value. Cox proportional hazards models were employed to calculate the hazard ratio (HR) with 95% CI.
RESULTS:
Among 428 CTO vessels treated with PCI, 353 vessels (82.5%) were analyzable for post-PCI QFR. 31 VOCEs (8.7%) occurred at 2 years. Mean value of post-PCI QFR was 0.92 ± 0.13. Receiver operator characteristic curve analysis shown the optimal cutoff value of post-PCI QFR for predicting 2-year VOCEs was 0.91. The incidence of 2-year VOCEs in the vessel with post-PCI QFR < 0.91 (n = 91) was significantly higher compared with the vessels with post-PCI QFR ≥ 0.91 (n = 262) (22.0% vs. 4.2%, HR = 4.98, 95% CI: 2.32-10.70).
CONCLUSIONS
Higher post-PCI QFR values were associated with improved prognosis in the PCI practice for coronary CTO. Achieving functionally optimal PCI results (post-PCI QFR value ≥ 0.91) tends to get better prognosis for patients with CTO lesions.
5.Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway.
Wen-Yan ZHOU ; Jian-Kui DU ; Hong-Hong LIU ; Lei DENG ; Kai MA ; Jian XIAO ; Sheng ZHANG ; Chang-Nan WANG
Journal of Integrative Medicine 2025;23(5):560-575
OBJECTIVE:
Baicalein has been reported to have wide therapeutic effects that act through its anti-inflammatory activity. This study examines the effect and mechanism of baicalein on sepsis-induced cardiomyopathy (SIC).
METHODS:
A thorough screening of a small library of natural products, comprising 100 diverse compounds, was conducted to identify the most effective drug against lipopolysaccharide (LPS)-treated H9C2 cardiomyocytes. The core target proteins and their associated signaling pathways involved in baicalein's efficacy against LPS-induced myocardial injury were predicted by network pharmacology.
RESULTS:
Baicalein was identified as the most potent protective agent in LPS-exposed H9C2 cardiomyocytes. It exhibited a dose-dependent inhibitory effect on cell injury and inflammation. In the LPS-induced septic mouse model, baicalein demonstrated a significant capacity to mitigate LPS-triggered myocardial deficits, inflammatory responses, and ferroptosis. Network pharmacological analysis and experimental confirmation suggested that hypoxia-inducible factor 1 subunit α (HIF1-α) is likely to be the crucial factor in mediating the impact of baicalein against LPS-induced myocardial ferroptosis and injury. By combining microRNA (miRNA) screening in LPS-treated myocardium with miRNA prediction targeting HIF1-α, we found that miR-299b-5p may serve as a regulator of HIF1-α. The reduction in miR-299b-5p levels in LPS-treated myocardium, compared to the control group, was reversed by baicalein treatment. The reverse transcription quantitative polymerase chain reaction, Western blotting, and dual-luciferase reporter gene analyses together identified HIF1-α as the target of miR-299b-5p in cardiomyocytes.
CONCLUSION
Baicalein mitigates SIC at the miRNA level, suggesting the therapeutic potential of it in treating SIC through the regulation of miR-299b-5p/HIF1-α/ferroptosis pathway. Please cite this article as: Zhou WY, Du JK, Liu HH, Deng L, Ma K, Xiao J, Zhang S, Wang CN. Baicalein attenuates lipopolysaccharide-induced myocardial injury by inhibiting ferroptosis via miR-299b-5p/HIF1-α pathway. J Integr Med. 2025; 23(5):560-575.
Flavanones/pharmacology*
;
Animals
;
MicroRNAs/genetics*
;
Lipopolysaccharides
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Ferroptosis/drug effects*
;
Mice
;
Myocytes, Cardiac/metabolism*
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Mice, Inbred C57BL
;
Cardiomyopathies/etiology*
;
Cell Line
;
Sepsis/complications*
6.Health risk assessment of oral exposure to 9 metals/ metalloids in drinking water for adults in Zibo, Shandong Province
Sha ZHU ; Yi HE ; Hui GAO ; Tong CHANG ; Tao WANG ; Cheng PENG
Journal of Environmental and Occupational Medicine 2024;41(9):1049-1053
Background Oral exposure to metals/metalloid elements in drinking water may be harmful to human health. Objective To assess potential health risks of oral exposure to 9 metals/metalloids in drinking water in Zibo City of Shandong Province from 2019 to 2023, and provide reference for the development of local drinking water management policies. Method From 2019 to 2023, a total of
7.Investigation of Pharmacodynamic Components of Allii Macrostemonis Bulbus in Treatment of Hyperlipidemia by Ultra-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry and Targeted Network Pharmacology Combined with Molecular Docking
Yi-Kai WANG ; Jin-Xu DONG ; Yu-Tao BAI ; Rui WANG ; Xin HUANG ; Chang-Bao CHEN ; Hao YUE ; Tong LIU ; De-Hui YANG
Chinese Journal of Analytical Chemistry 2024;52(4):578-586
The main chemical components of Allii Macrostemonis Bulbus and components in serum were analyzed and identified rapidly and precisely by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF-MS)technique in this study.The compounds were identified based on the relative molecular mass,fragmentation ions,and retention time of chromatographic peaks.A total of 36 kinds of chemical components were identified from Allii Macrostemonis Bulbus,including 28 kinds of saponins,3 kinds of amino acids,2 kinds of flavonoids,one kind of organosulfur compound,one kind of nucleoside,and one kind of hormone-lipid compound.In addition,8 kinds of compounds of Allii Macrostemonis Bulbus were identified from the serum.Based on the intersection compounds of which detected in serum and screened out by TCMSP platform database,by using targeted network pharmacology and molecular docking technology,a"drug-component-target-pathway"association network was constructed.Naringenin,quercetin,macrostemonoside E and 25(R)-26-O-β-D-glucopyranosyl-22-hydroxy-5β-furostan-3-O-β-D-glucopyranosyl(1→2)-β-D-glucopyranoside were screened as the main active constituents of Allii Macrostemonis Bulbus in the treatment of hyperlipidemia.In addition,adenosine 5′-monophosphate-activated protein kinase(AMPK),tumor necrosis factor(TNF),vascular endothelial growth factor A(VEGFA)and matrix metallopeptidase 9(MMP9)were the key action targets for Allii Macrostemonis Bulbus in the treatment of hyperlipidemia.Molecular docking was performed using the main pharmacodynamic components and key action targets.The results indicated that all the four active components showed strongly bound to AMPK.This suggested that the regulation of lipid metabolism might be the key mechanism of Allii Macrostemonis Bulbus in antihyperlipidemic effect.This study provided a data reference for the research on the pharmacodynamic components of Allii Macrostemonis Bulbus,and provided a basis for the improvement of quality standard of Allii Macrostemonis Bulbus.
8.Efficacy and safety of rituximab in the treatment of pediatric myasthenia gravis
Yunong TONG ; Cuijie WEI ; Xiaoling YANG ; Taoyun JI ; Yao ZHANG ; Ye WU ; Xingzhi CHANG ; Xinhua BAO ; Yuwu JIANG ; Hui XIONG ; Yuehua ZHANG
Chinese Journal of Pediatrics 2024;62(11):1050-1055
Objective:To evaluate the efficacy and safety of rituximab in pediatric myasthenia gravis (MG).Methods:Case series study. The clinical manifestations, laboratory tests, treatment plans and prognosis of 27 pediatric MG patients treated with rituximab from June 2013 to June 2023 at Children′s Medical Center of Peking University First Hospital were retrospectively collected.Results:There were 5 males and 22 females in 27 MG children. The onset age was 2.1 (1.6, 4.8) years, ranging from 8 months to 11 years. The clinical classification included 20 children (74%) of ocular MG and 7 children (26%) of generalized MG. Seventeen children (63%) had positive MG-related pathogenic antibodies, including 17 children of anti-AchR antibody and 1 of them also had anti-MuSK antibody. Rituximab was used as first-line immunosuppressant in 13 children, second-line immunosuppressant in 13 children and third-line immunosuppressant in 1 child. Immunosuppressants used before rituximab including 8 children of cyclosporine, 3 children of tacrolimus, 1 child of azathioprine, 1 child of mycophenolate mofetil and 1 child of cyclosporine combined with azathioprine. Rituximab was used for at least half a year with a follow-up period of more than 12 months. At the last follow-up after rituximab treatment, all children achieved improved or above, 14 children (52%) achieved complete stable remission, 7 children (26%) achieved pharmacologic remission, 1 child (4%) achieved minimal manifestations, and 5 children (18%) improved. After rituximab treatment, 27 children all could reduce the immunomodulation therapy and shorten the course of glucocorticoid therapy, and 22 children (81%) had stopped the glucocorticoid therapy. Among the 14 children with poor efficacy of other immunosuppressants, rituximab had complete stable remission of 7 children. The most common adverse reaction was respiratory infection (4 children (15%)). Only 2 children had allergic reaction to rituximab and got better after symptomatic treatment.Conclusions:Rituximab has good efficacy and tolerance in pediatric MG. Early application of rituximab can improve the prognosis and shorten the course of glucocorticoid treatment.
9.Role of CD8 + T cells in lethal Plasmodium yoelii 17XL infection
Tong LYU ; Yuzhi CHANG ; Feifei LI ; Chenchen ZHANG ; Yaming CAO ; Hui FENG
Chinese Journal of Microbiology and Immunology 2024;44(7):620-628
Objective:To investigate the role of CD8 + T cells in lethal Plasmodium yoelii 17XL ( Py 17XL) infection. Methods:BALB/c mice and C57BL/6 mice were infected with Py 17XL-infected red blood cells (1×10 6 cells/0.1 ml) through intraperitoneal injection to establish the mouse models of Py 17XL infection. Parasitemia (the percentage of erythrocytes infected with Py 17XL) and the survival rates of the mice was observed dynamically. Flow cytometry was used to detect the number of effector T cells (T EFF) and central memory T cells (T CM) of CD8 + T cell subpopulations, the expression of IFN-γ and granzyme B (GB) levels, and the expression of surface chemokine receptors CXCR3, CXCR6 and CX3CR1. FTY720 blocking experiment was conducted on Py 17XL-infected C57BL/6 mice to analyze the impact of CD8 + T cell migration on Py 17XL infection. Results:The parasitemia of BALB/c mice increased rapidly 5 d after infection and reached the peak on 8 d [(79.57±3.82)%]. Besides, the parasitemia was higher in BALB/c mice than in C57BL/6 mice 5-8 d after infection ( P<0.000 1). All BALB/c mice died on 9 d. The parasitemia of C57BL/6 mice reached the peak on 14 d [(48.19±3.19)%] and then decreased to 0 on 26 d. There was statistically significant difference in the survival rate between the two groups ( P<0.000 1). Flow cytometry results showed that compared with the BALB/c mice, the absolute number of CD8 + T cells in spleen and liver tissues and the number of CD8 + T EFF and CD8 + T CM cells in spleen and lymph nodes of C57BL/6 mice increased significantly ( P<0.05). Compared with the BALB/c mice, the levels of GB, IFN-γ and chemokines expressed by CD8 + T cells in spleen and liver tissues of C57BL/6 mice increased significantly ( P<0.05). The FTY720 blocking experiment showed that the survival rate, the absolute number of CD8 + T cells in liver and spleen, and the number of CD8 + CXCR3 + T cells decreased significantly in the experimental group ( P<0.05). Conclusions:CD8 + T EFF and CD8 + T CM cells contribute to resistance against Py 17XL infection by secreting GB and IFN-γ. The chemokine receptor CXCR3 plays an important role in mediating the chemotaxis of CD8 + T cells to spleen and liver.
10.Research progress on biomarkers and detection methods for Alzheimer's disease diagnosis in vitro.
Yu Ting ZHANG ; Ze ZHANG ; Ying Cong ZHANG ; Xin XU ; Zhang Min WANG ; Tong SHEN ; Xiao Hui AN ; Dong CHANG
Chinese Journal of Preventive Medicine 2023;57(11):1888-1894
Alzheimer's disease (AD) is a neurodegenerative disease with insidious onset, posing a serious threat to human physical and mental health. The cognitive impairments caused by AD are generally diffuse and overlap symptomatically with other neurodegenerative diseases. Moreover, the symptoms of AD are often covert, leading to missed opportunities for optimal treatment after diagnosis. Therefore, early diagnosis of AD is crucial. In vitro diagnostic biomarkers not only contribute to the early clinical diagnosis of AD but also aid in further understanding the disease's pathogenesis, predicting disease progression, and observing the effects of novel candidate therapeutic drugs in clinical trials. Currently, although there are numerous biomarkers associated with AD diagnosis, the complex nature of AD pathogenesis, limitations of individual biomarkers, and constraints of clinical detection methods have hindered the development of efficient, cost-effective, and convenient diagnostic methods and standards. This article provides an overview of the research progress on in vitro diagnostic biomarkers and detection methods related to AD in recent years.
Humans
;
Alzheimer Disease/diagnosis*
;
Neurodegenerative Diseases
;
Early Diagnosis
;
Cognitive Dysfunction
;
Biomarkers

Result Analysis
Print
Save
E-mail