1.Clinical Efficacy of Modified Huangqi Chifengtang in Treatment of IgA Nephropathy Patients and Exploration of Dose-effect Relationship of Astragali Radix
Xiujie SHI ; Meiying CHANG ; Yue SHI ; Ziyan ZHANG ; Yifan ZHANG ; Qi ZHANG ; Hangyu DUAN ; Jing LIU ; Mingming ZHAO ; Yuan SI ; Yu ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):9-16
ObjectiveTo explore the dose-effect relationship and safety of high, medium, and low doses of raw Astragali Radix in the modified Huangqi Chifengtang (MHCD) for treating proteinuria in immunoglobulin A (IgA) nephropathy, and to provide scientific evidence for the clinical use of high-dose Astragali Radix in the treatment of proteinuria in IgA nephropathy. MethodsA total of 120 patients with IgA nephropathy, diagnosed with Qi deficiency and blood stasis combined with wind pathogen and heat toxicity, were randomly divided into a control group and three treatment groups. The control group received telmisartan combined with a Chinese medicine placebo, while the treatment groups were given telmisartan combined with MHCD containing different doses of raw Astragali Radix (60, 30, 15 g). Each group contained 30 patients, and the treatment period was 12 weeks. Changes in 24-hour urinary protein (24 hUTP), traditional Chinese medicine (TCM) syndrome scores, effective rate, and renal function were observed before and after treatment. Safety was assessed by monitoring liver function and blood routine. ResultsAfter 12 weeks of treatment, 24 hUTP significantly decreased in the high, medium, and low-dose groups, as well as the control group (P<0.05, P<0.01). The TCM syndrome scores in the high, medium, and low-dose groups also significantly decreased (P<0.01). Comparisons between groups showed that the 24 hUTP in the high-dose group was significantly lower than in the medium, low-dose, and control groups (P<0.05, P<0.01), and the 24 hUTP in the medium-dose group was significantly lower than in the control group (P<0.05). The TCM syndrome scores in the high and medium-dose groups were significantly lower than in the low-dose and control groups (P<0.05, P<0.01). The total effective rates for proteinuria in the high, medium, low-dose, and control groups were 92.59% (25/27), 85.19% (23/27), 60.71% (17/28), and 57.14% (16/28), respectively. The effective rates in the high and medium-dose groups were significantly higher than in the low-dose and control groups (χ2=13.185, P<0.05, P<0.01). The effective rates for TCM syndrome scores in the high, medium, low-dose, and control groups were 88.89% (24/27), 81.48% (22/27), 71.43% (20/28), and 46.43% (13/28), respectively. The efficacy of TCM syndrome scores in the high and medium-dose groups was significantly higher than in the control group (χ2=14.053, P<0.01). Compared with pre-treatment values, there was no statistically significant difference in eGFR and serum creatinine in the high and medium-dose groups. However, eGFR significantly decreased in the low-dose and control groups after treatment (P<0.05), and serum creatinine levels increased significantly in the control group (P<0.05). No statistically significant differences were observed in urea nitrogen, uric acid, albumin, total cholesterol, triglycerides, liver function, and blood routine before and after treatment in any group. ConclusionThere is a dose-effect relationship in the treatment of IgA nephropathy with high, medium, and low doses of raw Astragali Radix in MHCD. The high-dose group exhibited the best therapeutic effect and good safety profile.
2.Characteristics of mitochondrial translational initiation factor 2 gene methylation and its association with the development of hepatocellular carcinoma
Huajie XIE ; Kai CHANG ; Yanyan WANG ; Wanlin NA ; Huan CAI ; Xia LIU ; Zhongyong JIANG ; Zonghai HU ; Yuan LIU
Journal of Clinical Hepatology 2025;41(2):284-291
ObjectiveTo investigate the characteristics of mitochondrial translational initiation factor 2 (MTIF2) gene methylation and its association with the development and progression of hepatocellular carcinoma (HCC). MethodsMethSurv and EWAS Data Hub were used to perform the standardized analysis and the cluster analysis of MTIF2 methylation samples, including survival curve analysis, methylation signature analysis, the association of tumor signaling pathways, and a comparative analysis based on pan-cancer database. The independent-samples t test was used for comparison between two groups; a one-way analysis of variance was used for comparison between multiple groups, and the least significant difference t-test was used for further comparison between two groups. The Cox proportional hazards model was used to perform the univariate and multivariate survival analyses of methylation level at the CpG site. The Kaplan-Meier method was used to investigate the survival differences between the patients with low methylation level and those with high methylation level, and the Log-likelihood ratio method was used for survival difference analysis. ResultsGlobal clustering of MTIF2 methylation showed that there was no significant difference in MTIF2 gene methylation level between different races, ethnicities, BMI levels, and ages. The Kaplan-Meier survival curve analysis showed that the patients with N-Shore hypermethylation of the MTIF2 gene had a significantly better prognosis than those with hypomethylation (hazard ratio [HR]=0.492, P<0.001), while there was no significant difference in survival rate between the patients with different CpG island and S-Shore methylation levels (P>0.05). The methylation profile of the MTIF2 gene based on different ages, sexes, BMI levels, races, ethnicities, and clinical stages showed that the N-Shore and CpG island methylation levels of the MTIF2 gene decreased with the increase in age, and the Caucasian population had significantly lower N-Shore methylation levels of the MTIF2 gene than the Asian population (P<0.05); the patients with clinical stage Ⅳ had significantly lower N-Shore and CpG island methylation levels of the MTIF2 gene than those with stage Ⅰ/Ⅱ (P<0.05). Clinical validation showed that the patients with stage Ⅲ/Ⅳ HCC had a significantly lower methylation level of the MTIF2 gene than those with stage Ⅰ/Ⅱ HCC and the normal population (P<0.05). ConclusionN-Shore hypomethylation of the MTIF2 gene is a risk factor for the development and progression of HCC.
3.Technology optimization and in vitro anti-tumor effect evaluation of reactive oxygen species-responsive metho-trexate-modified paclitaxel/icariin micelles
Naijian ZOU ; Liang KONG ; Lei CHANG ; Pengbo WAN ; Xiaolin JIANG ; Mingdian YUAN ; Yingqiang LU
China Pharmacy 2025;36(3):285-292
OBJECTIVE To prepare reactive oxygen species (ROS)-responsive methotrexate (MTX)-modified paclitaxel (PTX)/icariin (ICA) micelles (MTX-oxi-Ms@PTX/ICA), and perform technology optimization and in vitro anti-tumor effect evaluation. METHODS Synergistic toxicity concentration range of PTX and ICA was screened by synergistic toxicity test. The micelles were prepared by thin film hydration method, and their technology was optimized by response surface methodology. The fundamental characteristics of the micelles prepared by the optimal technology were evaluated. The micelles’ cytotoxicity, targeting ability to renal carcinoma RENCA cells of mice, and their inhibitory effects on invasion and migration were assessed. RESULTS Results of synergistic toxicity experiments demonstrated that the strongest synergistic effect occurred when PTX concentrations ranged from 2.5 to 10 μmol/L and ICA concentrations ranged from 5 to 15 μmol/L. The optimal technology of MTX-oxi-Ms@PTX/ ICA was determined to include 80 mg Soluplus®, Soluplus® and TPGS1000 mass ratio of 4∶1 (mg/mg), 2 mg DSPE-PEG2000-TK- PEG5000, 2 mg DSPE-PEG2000-MTX, 1 mg PTX, and 1.5 mg ICA, with a hydration temperature of 35 ℃ and a formulation volume of 5 mL. Under the optimal conditions, average encapsulation efficiency of PTX and ICA in 3 batches of MTX-oxi- Ms@PTX/ICA reached 92.75%, the critical micelle concentration (CMC) was 0.007 9 mg/mL, the particle size was (62.09±1.68) nm, the polydispersity index (PDI) was 0.046±0.032, and the Zeta potential was (-2.47±0.15) mV. Within 30 days of placement, there was no significant change E-mail:yingqiang_1126@163.com in particle size and polydispersity index of micelle. In vitro release experiments showed that MTX-oxi-Ms@PTX/ICA released drugs more rapidly in oxidative environments. The half maximal inhibitory concentration of MTX-oxi-Ms@PTX/ICA against RENCA cells was (5.170±0.036) μmol/L. In vitro cellular uptake experiments indicated that compared with unmodified micelles, MTX modified micelles had stronger targeting effects on cancer cells, and also significantly enhanced the inhibitory ability of invasion and migration of RENCA cells (P<0.05). CONCLUSIONS MTX-oxi-Ms@PTX/ICA micelles are successfully prepared, which exhibit high encapsulation efficiency, low critical micelle concentration, and good stability. These micelles demonstrate significant cytotoxicity against RENCA cells and effectively inhibit cancer cell invasion and migration.
4.Effect of neuromuscular exercise for knee osteoarthritis pain and function:a meta-analysis
Yundi SUN ; Lulu CHENG ; Haili WAN ; Ying CHANG ; Wenjuan XIONG ; Yuan XIA
Chinese Journal of Tissue Engineering Research 2025;29(9):1945-1952
OBJECTIVE:Neuromuscular exercise is a new comprehensive rehabilitation therapy in recent years,but its effect on knee osteoarthritis is still controversial.The purpose of this paper is to systematically evaluate the efficacy of neuromuscular exercise on knee osteoarthritis pain and function. METHODS:The randomized controlled trials addressing neuromuscular exercise in the treatment of knee osteoarthritis pain and function were retrieved from PubMed,Cochrane Library,Embase,EBSCO,CNKI,Web of Science,China Biomedical Database(CBM),VIP,and WanFang Database.The retrieval time ranged from database inception to October 2023.The neuromuscular training group(experimental group)was given neuromuscular training or neuromuscular training as the main intervention;the control group was a blank group or given conventional rehabilitation.Outcome indicators included the Western Ontario and McMaster Universities Osteoarthritis Index(WOMAC)score,walking time,knee stability,and the maximum number of knee flexion in 30 seconds.The risk of bias was evaluated by the Cochrane Collaboration tool and the Physiotherapy Evidence Database.Meta-analysis was performed using RevMan 5.4 software. RESULTS:A total of 11 randomized controlled trials were included,and 628 samples were extracted.The results of Meta-analysis showed that the experimental group was superior to the control group in terms of WOMAC pain score[standardized mean difference(SMD)=0.38,95%confidence interval(CI):0.08-0.69,P=0.01],knee stability(SMD=0.57,95%CI:0.23-0.92,P=0.001),the maximum number of knee joint flexion in 30 seconds(SMD=0.35,95%CI:0.05-0.65,P=0.02),and WOMAC physical function score(SMD=-0.79,95%CI:-1.30 to-0.28,P=0.002).In both groups,walking speed was increased and walking ability was improved in patients with knee osteoarthritis,but there was no significant difference(walking time:SMD=-0.22,95%CI:-0.48-0.03,P=0.09). CONCLUSION:Neuromuscular exercise can effectively improve knee joint pain,enhance the stability of the knee joint,and promote functional recovery in patients with knee osteoarthritis.However,more high-quality randomized controlled trials are still needed to further confirm the research.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Safety and Efficacy of Radiofrequency Ablation for Superficial Parotid Pleomorphic Adenoma
Chih-Ying LEE ; Wei-Che LIN ; Sheng-Dean LUO ; Pi-Ling CHIANG ; An-Ni LIN ; Cheng-Kang WANG ; Chun-Yuan CHAO
Korean Journal of Radiology 2025;26(5):460-470
Objective:
To retrospectively compare the safety and efficacy of ultrasound-guided radiofrequency ablation (RFA) with parotidectomy for superficial pleomorphic adenoma (PA).
Materials and Methods:
From March 2022 to October 2023, 88 patients diagnosed with superficial parotid PA underwent either RFA (n = 12; mean age, 47.1 years) or parotidectomy (n = 76; mean age, 47.8 years). Patients in the RFA group were matched to those in the surgery group in a 1:1 ratio using propensity scores based on age, sex, tumor volume, diameter, location, and comorbidities. Ultrasound characteristics, cosmetic scores (0–4), numerical rating scale scores (0–10), and complications were assessed before the procedures and at 1-, 3-, and 6-month follow-ups. Outcomes were compared between baseline and follow-up in the RFA group and between the RFA and surgery groups.
Results:
In the RFA group, significant reductions in tumor volume were observed between baseline (median, 2.02 cm 3 ) and the 1-month follow-up (median, 1.21 cm 3 ; P = 0.015), between the 1-month and 3-month follow-ups (median, 0.53 cm 3 ; P= 0.002), and between the 3- and 6-month follow-ups (median, 0.23 cm 3 ; P = 0.003). The volume reduction ratios at 1, 3, and 6 months were 39.7%, 79.9%, and 88.0%, respectively. The cosmetic score was significantly lower at 3- and 6-month followup compared to baseline (median 1 and 1 vs. 4, P = 0.04). The numerical rating scale scores did not differ significantly from baseline throughout follow-up. In the propensity score-matched analysis (12 patients per group), RFA was associated with a shorter median procedure time (61.5 vs. 253.3 minutes; P < 0.001), shorter hospital stay (0 vs. 4 days; P < 0.001), and lower cost (1859.9 vs. 3512.4 USD; P < 0.001) than parotidectomy, with no significant difference in overall complication rates (33.3% [4/12] vs. 41.7% [5/12]; P = 1.000).
Conclusion
RFA may be a safe and effective alternative to surgery for superficial parotid PA, offering a shorter median procedure time, shorter hospital stay, and lower costs.
7.Homeobox protein C4 regulates the proliferation, migration and invasion of gastric cancer cells by integrin β1
YUAN Bo1 ; MA Lei2 ; CHEN Xiaobing3 ; CHANG Zhanguo1
Chinese Journal of Cancer Biotherapy 2025;32(4):364-370
[摘 要] 目的:探讨同源框蛋白C4(HOXC4)在胃癌组织和细胞中的表达及其对胃癌细胞增殖、迁移与侵袭的作用及其机制。方法:收集2020年5月至2021年4月期间在南阳市第一人民医院肿瘤科手术切除的16例进展期胃癌患者的癌及癌旁组织标本,以及人胃正常上皮细胞GES-1和胃癌细胞AGS、SGC-790和MGC-803,采用WB法检测胃癌组织和细胞中HOXC4的表达。通过RNA干扰技术对SGC-790及AGS细胞中HOXC4进行敲低或过表达,实验分为sh-HOXC4#1组、sh-HOXC4#2组、sh-Con组、sh-HOXC4 + pc-integrin β1组、pc-HOXC4组、pc-Con组、pc-HOXC4 + pc-integrin β1组。利用EdU、CCK-8、Transwell实验分别检测敲低或过表达HOXC4对各组细胞活力、增殖、侵袭、迁移和integrin β1表达的影响。用敲低HOXC4的胃癌AGS细胞构建荷瘤小鼠模型,观察敲低HOXC4对移植瘤体积及组织中Ki67和integrin β1蛋白表达的影响。结果:胃癌组织和细胞中HOXC4的表达均显著上调(均P < 0.01)。与sh-Con组相比,sh-HOXC4#1组和sh-HOXC4#2组SGC-790及AGS细胞中HOXC4、integrin β1蛋白表达水平,以及细胞的活力、增殖、迁移及侵袭能力均显著降低(均P < 0.01)。与sh-HOXC4组相比,sh-HOXC4 + pc-integrin β1组细胞活力、增殖、迁移及侵袭能力均显著增加(均P < 0.01);与pc-Con组相比,pc-HOXC4组细胞活力、侵袭及迁移能力均显著增加(均P < 0.01);与pc-HOXC4组相比,pc-HOXC4 + pc-integrin β1组细胞活力、迁移及侵袭能力均显著降低(均P < 0.01)。与sh-Con组相比,sh-HOXC4#1组和sh-HOXC4#2组小鼠移植瘤生长缓慢、体积变小,组织中Ki67和integrin β1表达均显著降低(均P < 0.01)。结论:HOXC4在胃癌组织与细胞中表达上调,其通过激活integrin β1信号促进胃癌细胞的增殖、迁移与侵袭。
8.PDGF-C: an Emerging Target in The Treatment of Organ Fibrosis
Chao YANG ; Zi-Yi SONG ; Chang-Xin WANG ; Yuan-Yuan KUANG ; Yi-Jing CHENG ; Ke-Xin REN ; Xue LI ; Yan LIN
Progress in Biochemistry and Biophysics 2025;52(5):1059-1069
Fibrosis, the pathological scarring of vital organs, is a severe and often irreversible condition that leads to progressive organ dysfunction. It is particularly pronounced in organs like the liver, kidneys, lungs, and heart. Despite its clinical significance, the full understanding of its etiology and complex pathogenesis remains incomplete, posing substantial challenges to diagnosing, treating, and preventing the progression of fibrosis. Among the various molecular players involved, platelet-derived growth factor-C (PDGF-C) has emerged as a crucial factor in fibrotic diseases, contributing to the pathological transformation of tissues in several key organs. PDGF-C is a member of the PDGFs family of growth factors and is synthesized and secreted by various cell types, including fibroblasts, smooth muscle cells, and endothelial cells. It acts through both autocrine and paracrine mechanisms, exerting its biological effects by binding to and activating the PDGF receptors (PDGFRs), specifically PDGFRα and PDGFRβ. This binding triggers multiple intracellular signaling pathways, such as JAK/STAT, PI3K/AKT and Ras-MAPK pathways. which are integral to the regulation of cell proliferation, survival, migration, and fibrosis. Notably, PDGF-C has been shown to promote the proliferation and migration of fibroblasts, key effector cells in the fibrotic process, thus accelerating the accumulation of extracellular matrix components and the formation of fibrotic tissue. Numerous studies have documented an upregulation of PDGF-C expression in various fibrotic diseases, suggesting its significant role in the initiation and progression of fibrosis. For instance, in liver fibrosis, PDGF-C stimulates hepatic stellate cell activation, contributing to the excessive deposition of collagen and other extracellular matrix proteins. Similarly, in pulmonary fibrosis, PDGF-C enhances the migration of fibroblasts into the damaged areas of lungs, thereby worsening the pathological process. Such findings highlight the pivotal role of PDGF-C in fibrotic diseases and underscore its potential as a therapeutic target for these conditions. Given its central role in the pathogenesis of fibrosis, PDGF-C has become an attractive target for therapeutic intervention. Several studies have focused on developing inhibitors that block the PDGF-C/PDGFR signaling pathway. These inhibitors aim to reduce fibroblast activation, prevent the excessive accumulation of extracellular matrix components, and halt the progression of fibrosis. Preclinical studies have demonstrated the efficacy of such inhibitors in animal models of liver, kidney, and lung fibrosis, with promising results in reducing fibrotic lesions and improving organ function. Furthermore, several clinical inhibitors, such as Olaratumab and Seralutinib, are ongoing to assess the safety and efficacy of these inhibitors in human patients, offering hope for novel therapeutic options in the treatment of fibrotic diseases. In conclusion, PDGF-C plays a critical role in the development and progression of fibrosis in vital organs. Its ability to regulate fibroblast activity and influence key signaling pathways makes it a promising target for therapeutic strategies aiming at combating fibrosis. Ongoing research into the regulation of PDGF-C expression and the development of PDGF-C/PDGFR inhibitors holds the potential to offer new insights and approaches for the diagnosis, treatment, and prevention of fibrotic diseases. Ultimately, these efforts may lead to the development of more effective and targeted therapies that can mitigate the impact of fibrosis and improve patient outcomes.
9.In situ Analytical Techniques for Membrane Protein Interactions
Zi-Yuan KANG ; Tong YU ; Chao LI ; Xue-Hua ZHANG ; Jun-Hui GUO ; Qi-Chang LI ; Jing-Xing GUO ; Hao XIE
Progress in Biochemistry and Biophysics 2025;52(5):1206-1218
Membrane proteins are integral components of cellular membranes, accounting for approximately 30% of the mammalian proteome and serving as targets for 60% of FDA-approved drugs. They are critical to both physiological functions and disease mechanisms. Their functional protein-protein interactions form the basis for many physiological processes, such as signal transduction, material transport, and cell communication. Membrane protein interactions are characterized by membrane environment dependence, spatial asymmetry, weak interaction strength, high dynamics, and a variety of interaction sites. Therefore, in situ analysis is essential for revealing the structural basis and kinetics of these proteins. This paper introduces currently available in situ analytical techniques for studying membrane protein interactions and evaluates the characteristics of each. These techniques are divided into two categories: label-based techniques (e.g., co-immunoprecipitation, proximity ligation assay, bimolecular fluorescence complementation, resonance energy transfer, and proximity labeling) and label-free techniques (e.g., cryo-electron tomography, in situ cross-linking mass spectrometry, Raman spectroscopy, electron paramagnetic resonance, nuclear magnetic resonance, and structure prediction tools). Each technique is critically assessed in terms of its historical development, strengths, and limitations. Based on the authors’ relevant research, the paper further discusses the key issues and trends in the application of these techniques, providing valuable references for the field of membrane protein research. Label-based techniques rely on molecular tags or antibodies to detect proximity or interactions, offering high specificity and adaptability for dynamic studies. For instance, proximity ligation assay combines the specificity of antibodies with the sensitivity of PCR amplification, while proximity labeling enables spatial mapping of interactomes. Conversely, label-free techniques, such as cryo-electron tomography, provide near-native structural insights, and Raman spectroscopy directly probes molecular interactions without perturbing the membrane environment. Despite advancements, these methods face several universal challenges: (1) indirect detection, relying on proximity or tagged proxies rather than direct interaction measurement; (2) limited capacity for continuous dynamic monitoring in live cells; and (3) potential artificial influences introduced by labeling or sample preparation, which may alter native conformations. Emerging trends emphasize the multimodal integration of complementary techniques to overcome individual limitations. For example, combining in situ cross-linking mass spectrometry with proximity labeling enhances both spatial resolution and interaction coverage, enabling high-throughput subcellular interactome mapping. Similarly, coupling fluorescence resonance energy transfer with nuclear magnetic resonance and artificial intelligence (AI) simulations integrates dynamic structural data, atomic-level details, and predictive modeling for holistic insights. Advances in AI, exemplified by AlphaFold’s ability to predict interaction interfaces, further augment experimental data, accelerating structure-function analyses. Future developments in cryo-electron microscopy, super-resolution imaging, and machine learning are poised to refine spatiotemporal resolution and scalability. In conclusion, in situ analysis of membrane protein interactions remains indispensable for deciphering their roles in health and disease. While current technologies have significantly advanced our understanding, persistent gaps highlight the need for innovative, integrative approaches. By synergizing experimental and computational tools, researchers can achieve multiscale, real-time, and perturbation-free analyses, ultimately unraveling the dynamic complexity of membrane protein networks and driving therapeutic discovery.
10.Safety and Efficacy of Radiofrequency Ablation for Superficial Parotid Pleomorphic Adenoma
Chih-Ying LEE ; Wei-Che LIN ; Sheng-Dean LUO ; Pi-Ling CHIANG ; An-Ni LIN ; Cheng-Kang WANG ; Chun-Yuan CHAO
Korean Journal of Radiology 2025;26(5):460-470
Objective:
To retrospectively compare the safety and efficacy of ultrasound-guided radiofrequency ablation (RFA) with parotidectomy for superficial pleomorphic adenoma (PA).
Materials and Methods:
From March 2022 to October 2023, 88 patients diagnosed with superficial parotid PA underwent either RFA (n = 12; mean age, 47.1 years) or parotidectomy (n = 76; mean age, 47.8 years). Patients in the RFA group were matched to those in the surgery group in a 1:1 ratio using propensity scores based on age, sex, tumor volume, diameter, location, and comorbidities. Ultrasound characteristics, cosmetic scores (0–4), numerical rating scale scores (0–10), and complications were assessed before the procedures and at 1-, 3-, and 6-month follow-ups. Outcomes were compared between baseline and follow-up in the RFA group and between the RFA and surgery groups.
Results:
In the RFA group, significant reductions in tumor volume were observed between baseline (median, 2.02 cm 3 ) and the 1-month follow-up (median, 1.21 cm 3 ; P = 0.015), between the 1-month and 3-month follow-ups (median, 0.53 cm 3 ; P= 0.002), and between the 3- and 6-month follow-ups (median, 0.23 cm 3 ; P = 0.003). The volume reduction ratios at 1, 3, and 6 months were 39.7%, 79.9%, and 88.0%, respectively. The cosmetic score was significantly lower at 3- and 6-month followup compared to baseline (median 1 and 1 vs. 4, P = 0.04). The numerical rating scale scores did not differ significantly from baseline throughout follow-up. In the propensity score-matched analysis (12 patients per group), RFA was associated with a shorter median procedure time (61.5 vs. 253.3 minutes; P < 0.001), shorter hospital stay (0 vs. 4 days; P < 0.001), and lower cost (1859.9 vs. 3512.4 USD; P < 0.001) than parotidectomy, with no significant difference in overall complication rates (33.3% [4/12] vs. 41.7% [5/12]; P = 1.000).
Conclusion
RFA may be a safe and effective alternative to surgery for superficial parotid PA, offering a shorter median procedure time, shorter hospital stay, and lower costs.

Result Analysis
Print
Save
E-mail