1.Three new chalcone C-glycosides from Carthami Flos.
Jia-Xu BAO ; Yong-Xiang WANG ; Xian ZHANG ; Ya-Zhu YANG ; Yue LIN ; Jiao-Jiao YIN ; Yun-Fang ZHAO ; Hui-Xia HUO ; Peng-Fei TU ; Jun LI
China Journal of Chinese Materia Medica 2025;50(13):3715-3745
The chemical components of Carthami Flos were investigated by using macroporous resin, silica gel column chromatography, reversed-phase octadecylsilane(ODS) column chromatography, Sephadex LH-20, and semi-preparative high-performance liquid chromatography(HPLC). The planar structures of the compounds were established based on their physicochemical properties and ultraviolet-visible(UV-Vis), infrared(IR), high-resolution electrospray ionization mass spectrometry(HR-ESI-MS), and nuclear magnetic resonance(NMR) spectroscopic technology. The absolute configurations were determined by comparing the calculated and experimental electronic circular dichroism(ECD). Six flavonoid C-glycosides were isolated from the 30% ethanol elution fraction of macroporous resin obtained from the 95% ethanol extract of Carthami Flos, and identified as saffloquinoside F(1), 5-hydroxysaffloneoside(2), iso-5-hydroxysaffloneoside(3), isosafflomin C(4), safflomin C(5), and vicenin 2(6). Among these, the compounds 1 to 3 were new chalcone C-glycosides. The compounds 1, 2, 4, and 5 could significantly increase the viability of H9c2 cardiomyocytes damaged by oxygen-glucose deprivation/reoxygenation(OGD/R) at a concentration of 50 μmol·L~(-1), showing their good cardioprotective activity.
Glycosides/pharmacology*
;
Flowers/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Carthamus tinctorius/chemistry*
;
Chalcones/pharmacology*
;
Animals
2.Research progress on dihydrochalcones from Lithocarpus litseifolius extracts in treatment of type 2 diabetes mellitus and its complications.
Yun-Qin WEI ; Yu-Lan CAI ; Yan YANG ; Shang-Heng FAN ; Lin-Li WU ; Gui-Lan NIE
China Journal of Chinese Materia Medica 2025;50(3):658-671
Type 2 diabetes mellitus(T2DM) is a prevalent metabolic and endocrine disorder. Long-term hyperglycemia can lead to severe chronic complications, imposing substantial economic burdens on both society and patients. Despite the availability of various hypoglycemic agents for clinical use, these agents often fail to meet the therapeutic needs of T2DM and its complications. Consequently, there is an urgent need for novel therapeutic strategies and drugs. Lithocarpus litseifolius(L. litseifolius), commonly referred to as "cordyceps on trees", has a long history of use in traditional medicine and can be applied in tea, sugar, and medicine. Research indicates that L. litseifolius extracts are rich in dihydrochalcones, including trilobatin, phloridzin, and phloretin, which exhibit a range of pharmacological activities, such as anti-inflammatory, antioxidant, hypoglycemic, hypolipidemic, hepatoprotective, and cardioprotective effects. These properties suggest potential applications in the treatment of T2DM and its complications. This review systematically compiled and organized the relevant literature from the past decade on dihydrochalcones(trilobatin, phloridzin, and phloretin) from L. litseifolius extracts. It highlighted recent research progress regarding their role in treating T2DM and its complications through mechanisms such as reducing insulin resistance, regulating glucose transport, improving glucose and lipid metabolism, modulating enzyme activity, regulating gut microbiota, and alleviating inflammation and oxidative damage. The purpose of this review is to provide a reference and basis for future research on the prevention and treatment of T2DM and its complications using dihydrochalcones(trilobatin, phloridzin, and phloretin) from L. litseifolius extracts.
Chalcones/chemistry*
;
Diabetes Mellitus, Type 2/metabolism*
;
Humans
;
Animals
;
Elaeocarpaceae/chemistry*
;
Drugs, Chinese Herbal/therapeutic use*
;
Hypoglycemic Agents/chemistry*
;
Plant Extracts/chemistry*
3.Functional characterization and enzymatic properties of flavonoid glycosyltransferase gene CtUGT49 in Carthamus tinctorius.
Xin-Bo CAI ; Nan LIU ; Jia LI ; Rong LIU ; Yun-Feng LUO ; Yi-Feng ZHANG ; Jia-Dian WANG ; Xiao-Yi WU ; Lu-Qi HUANG
China Journal of Chinese Materia Medica 2023;48(24):6624-6634
Carthami Flos, as a traditional blood-activating and stasis-resolving drug, possesses anti-tumor, anti-inflammatory, and immunomodulatory pharmacological activities. Flavonoid glycosides are the main bioactive components in Carthamus tinctorius. Glycosyltransferase deserves to be studied in depth as a downstream modification enzyme in the biosynthesis of active glycoside compounds. This study reported a flavonoid glycosyltransferase CtUGT49 from C. tinctorius based on the transcriptome data, followed by bioinformatic analysis and the investigation of enzymatic properties. The open reading frame(ORF) of the gene was 1 416 bp, encoding 471 amino acid residues with the molecular weight of about 52 kDa. Phylogenetic analysis showed that CtUGT49 belonged to the UGT73 family. According to in vitro enzymatic results, CtUGT49 could catalyze naringenin chalcone to the prunin and choerospondin, and catalyze phloretin to phlorizin and trilobatin, exhibiting good substrate versatility. After the recombinant protein CtUGT49 was obtained by hetero-logous expression and purification, the enzymatic properties of CtUGT49 catalyzing the formation of prunin from naringenin chalcone were investigated. The results showed that the optimal pH value for CtUGT49 catalysis was 7.0, the optimal temperature was 37 ℃, and the highest substrate conversion rate was achieved after 8 h of reaction. The results of enzymatic kinetic parameters showed that the K_m value was 209.90 μmol·L~(-1) and k_(cat) was 48.36 s~(-1) calculated with the method of Michaelis-Menten plot. The discovery of the novel glycosyltransferase CtUGT49 is important for enriching the library of glycosylation tool enzymes and provides a basis for analyzing the glycosylation process of flavonoid glycosides in C. tinctorius.
Carthamus tinctorius/chemistry*
;
Phylogeny
;
Flavonoids/analysis*
;
Glycosides/analysis*
;
Glycosyltransferases/genetics*
;
Anti-Inflammatory Agents
;
Chalcones
4.A new dihydrochalcone from Humulus scandens.
Yuan-Ning WU ; Biao SUN ; Jun-Ya WANG ; De-Zhi WANG ; Min SONG ; Xiao-Qi ZHANG
China Journal of Chinese Materia Medica 2023;48(7):1885-1891
To study the chemical constituents from the stems and leaves of Humulus scandens, this study isolated thirteen compounds by different chromatographic methods including silica gel column, ODS, Sephadex LH-20 and preparative HPLC. Based on comprehensive analysis, the chemical structures were elucidated and identified as citrunohin A(1), chrysosplenetin(2), casticin(3), neoechinulin A(4), ethyl 1H-indole-3-carboxylate(5), 3-hydroxyacetyl-indole(6),(1H-indol-3-yl) oxoacetamide(7), inonotusic acid(8), arteannuin B(9), xanthotoxol(10), α-tocopherol quinone(11), eicosanyl-trans-p-coumarate(12), and 9-oxo-(10E,12E)-octadecadienoic acid(13). Among them, compound 1 was a new dihydrochalcone, and the other compounds were obtained from H. scandens for the first time.
Humulus
;
Chalcones
;
Indoles
;
Drugs, Chinese Herbal/chemistry*
5.Geranylated or prenylated flavonoids from Cajanus volubilis.
Li RAO ; Yu SU ; Qian HE ; Jia YE ; Yu LIU ; Yue FAN ; Feng HU ; Zhen ZHOU ; Lishe GAN ; Yonghui ZHANG ; Chuanrui ZHANG
Chinese Journal of Natural Medicines (English Ed.) 2023;21(4):292-297
Five new flavonoid derivatives, cajavolubones A-E (1-5), along with six known analogues (6-11) were isolated from Cajanus volubilis, and their structures were elucidated by spectroscopic analysis and quantum chemical calculations. Cajavolubones A and B (1 and 2) were identified as two geranylated chalcones. Cajavolubone C (3) was a prenylated flavone, while cajavolubones D and E (4 and 5) were two prenylated isoflavanones. Compounds 3, 8, 9 and 11 displayed cytotoxicity against HCT-116 cancer cell line.
Flavonoids/chemistry*
;
Cajanus
;
Molecular Structure
;
Chalcones/chemistry*
6.Preventive and therapeutic effect of bioactive component of licorice on antidepressant-induced liver injury.
Wen-Qing MU ; Guang XU ; Jia ZHAO ; Yuan-Yuan CHEN ; Zhao-Fang BAI ; Xiao-He XIAO
China Journal of Chinese Materia Medica 2022;47(22):6146-6154
Since exploding rates of modern mental diseases, application of antidepressants has increased. Worryingly, the antidepressant-induced liver injury has gradually become a serious health burden. Furthermore, since most of the knowledge about antidepressant hepatotoxicity are from pharmacovigilance and clinical case reports and lack of observational studies, the underlying mechanisms are poorly understood and there is a lack of efficient treatment strategies. In this study, antidepressant paroxetine directly triggered inflammasome activation evidenced by caspase-1 activation and downstream effector cytokines interleukin(IL)-1β secretion. The pretreatment of echinatin, a bioactive component of licorice, completely blocked the activation. This study also found that echinatin effectively inhibited the production of inflammasome-independent tumor necrosis factor α(TNF)-α induced by paroxetine. Mechanistically, the accumulation of mitochondrial reactive oxygen species(mtROS) was a key upstream event of paroxetine-induced inflammasome activation, which was dramatically inhibited by echinatin. In the lipopolysaccharide(LPS)-mediated idiosyncratic drug-induced liver injury(IDILI) model, the combination of LPS and paroxetine triggered aberrant activation of the inflammasome to induce idiosyncratic hepatotoxicity, which was reversed by echinatin pretreatment. Notably, this study also found that various bioactive components of licorice had an inhibitory effect on paroxetine-triggered inflammasome activation. Meanwhile, multiple antidepressant-induced aberrant activation of the inflammasome could be completely blocked by echinatin pretreatment. In conclusion, this study provides a novel insight for mechanism of antidepressant-induced liver injury and a new strategy for the treatment of antidepressant-induced hepatotoxicity.
Animals
;
Humans
;
Mice
;
Antidepressive Agents/adverse effects*
;
Chemical and Drug Induced Liver Injury, Chronic/prevention & control*
;
Glycyrrhiza/chemistry*
;
Inflammasomes/drug effects*
;
Interleukin-1beta/metabolism*
;
Lipopolysaccharides/toxicity*
;
Mice, Inbred C57BL
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Paroxetine/adverse effects*
;
Tumor Necrosis Factor-alpha
;
Chalcones/therapeutic use*
7.Analysis of flavonoids in Coreopsis tinctoria by integrating 2D-TLC and HPLC-IT-TOF-MS.
Mi-Mi REN ; Ying XIA ; Zi-Wei FENG ; Bing-Yu ZHUO ; Sheng-Li WEI ; Yuan ZHANG
China Journal of Chinese Materia Medica 2019;44(7):1403-1409
The qualitative analysis of flavonoids in Coreopsis tinctoria was carried out by a combination of 2 D-TLC and HPLC-IT-TOF-MS. The separation was conducted on 2 D-TLC and a Phenomenex Kinetex Evo C_(18) column(2.1 mm×100 mm, 2.6 μm) with methanol-0.05% aqueous formic acid by gradient elution. Electrospray ionization-(ESI) source was applied and operated in both positive and negative ionization modes. Eighteen flavonoids including three flavonoids, one flavonol, nine flavonones, one flavanonol and four chalcones, were putatively identified from the flavone-enriched fraction of C. tinctoria. 2 D-TLC could separate the flavonoids from C. tinctoria. HPLC-IT-TOF-MS was able to quickly and accurately analyze the flavonoids in C. tinctoria. The results would provide experimental information for the efficacy material basis clarification of C. tinctoria.
Chalcones
;
analysis
;
Chromatography, High Pressure Liquid
;
Coreopsis
;
chemistry
;
Flavonoids
;
analysis
;
Phytochemicals
;
analysis
;
Plant Extracts
;
analysis
;
Spectrometry, Mass, Electrospray Ionization
8.HPLC-based activity profiling of anti-hepatocellular carcinoma constituents from the Tibetan medicine, Caragana tibetica.
Ping SONG ; Qiang WANG ; Jing-Nan LV ; Chan XU ; Qin-Xiong LIN ; Xin-Hua MA ; Mi HUANG ; Xin-Zhou YANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(3):450-455
During the screening of a traditional Chinese folk herb library against HepG2 and Hep3B cell lines, the EtOAc extract from the Tibetan medicine, Caragana tibetica (CT-EtOAc) exhibited potential anti-hepatocellular carcinoma (anti-HCC) activity. HPLC-based activity profiling was performed for targeted identification of anti-HCC activity from CT-EtOAc by MS-directed purification method. CT-EtOAc was separated by time-based fractionation for further anti-HCC bioassay by a semipreparative HPLC column (150 mm × 10 mm i.d., 5 μm) with a single injection of 5 mg. Bioassay-guided and ESIMS-directed large scale purification was performed with a single injection of 400 mg of CT-EtOAc by peak-based fractionation. A 1.4-mm heavy wall micro NMR tube with z-gradient was used to measure one and two dimensional NMR spectra for the minor or trace amounts of components of the extract. Two active compounds could be elucidated as naringenin chalcone (CT-1) and 3-hydroxy-8, 9-dimethoxypterocarpan (CT-2) relevant to anti-HCC effects for the EtOAc extract of C. tibetica rapidly and unambiguously by this protocol.
Acetates
;
pharmacology
;
Antineoplastic Agents
;
chemistry
;
pharmacology
;
Caragana
;
chemistry
;
Carcinoma, Hepatocellular
;
drug therapy
;
Cell Line, Tumor
;
Chalcones
;
pharmacology
;
Chromatography, High Pressure Liquid
;
Hep G2 Cells
;
Humans
;
Liver Neoplasms
;
drug therapy
;
Medicine, Tibetan Traditional
;
Plant Extracts
;
chemistry
;
pharmacology
;
Plant Roots
;
chemistry
9.Total flavonoid from Glycyrrhizae Radix et Rhizoma and its ingredient isoliquiritigenin regulation M2 phenotype polarization of macrophages.
Yuan-lai WANG ; Xi TAN ; Xiao-lu YANG ; Xiao-yun LI ; Ka BIAN ; Dan-dan ZHANG
China Journal of Chinese Materia Medica 2015;40(22):4475-4481
To study the mechanisms of total flavonoid from Glycyrrhizae Radix et Rhizoma (TFGR) and its ingredient isoliquiritigenin (ISL) on their regulation of M2 phenotype polarization of macrophages. IL-4 (60 μg x L(-1)) induced RAW264.7 cells for 6 h to establish the M2 macrophage model. TFGR and ISL restrained breast cancer cells migration with the aid of M2 macrophages in vitro. TFGR and ISL inhibited gene and protein expression of Arg-1, up-regulated gene of HO-1 and protein expression of iNOS, enhanced the expression of microRNA 155 and its target gene SHIP1, meanwhile down-regulated.the phosphorylation of STAT3 and STAT6. So TFGR and ISL were the bioactive fraction and ingredient in Glycyrrhizae Radix et Rhizoma to reverse M2 phenotype macrophages polarization. TFGR and ISL inhibited the promotion of M2 macrophages to breast cancer cells migration in vitro, STAT signal pathways and miR155 were partly involved.
Animals
;
Cell Line, Tumor
;
Cell Movement
;
drug effects
;
Cell Polarity
;
drug effects
;
Chalcones
;
pharmacology
;
Flavonoids
;
pharmacology
;
Glycyrrhiza
;
chemistry
;
Interleukin-4
;
genetics
;
metabolism
;
Macrophages
;
cytology
;
drug effects
;
metabolism
;
Mice
;
RAW 264.7 Cells
;
Rhizome
;
chemistry
10.Study on mechanism of inducing apoptosis in human hepatoma SMMC-7721 cells by DMC, a chalcone from buds of Cleistocalyx operculatus.
Chun-Lin YE ; Yi-Feng LAI ; Xuan-Gan LIU ; Qi HUANG
China Journal of Chinese Materia Medica 2014;39(15):2942-2946
OBJECTIVETo study the in-vitro inducing apoptosis mechanism of human hepatoma SMMC-7721 cells by 2',4'-di- hydroxy-6'-methoxy-3',5'-dimethylchalcone (DMC), a chalcone compound from Cleistocalyx operculatus.
METHODQuantitative DNA fragmentation assay was carried out to detect the effect of DMC of different concentrations on SMMC-7721 cells, according to the method of Sellins and Cohen with some modifications. Telomerase activities of the cells were determined by PCR-ELISA methods. The expression quantity of c-myc and hTERT mRNA were determined by semi-quantitative RT-PCR The effect of DMC on expression levels of cmyc and hTERT protein were measured by western blot.
RESULTThe percentage of DNA fragmentation increased with notable concen- tration dependence, after treatment with DMC for 48 h. Compared with that of control group, the telomerase activity of the cells de- creased by (66.2 ± 2.1)% after 48 h treatment with 20 μmol x L(-1) DMC, the mRNA expression of c-myc and hTERT decreased by (67.3 ± 2.1)% and (64.4 ± 2.3)%, respectively, and the protein expression of c-myc and hTERT decreased by (69.6 ± 1.9)% and (71.3 ± 2.4)%, respectively.
CONCLUSIONDMC can induce SMMC-7721 cell apoptosis and the apoptosis mechanism may be related to the decreased mRNA and protein expression of c-myc and hTERT.
Antineoplastic Agents ; pharmacology ; Apoptosis ; drug effects ; Carcinoma, Hepatocellular ; pathology ; Cell Line, Tumor ; Chalcones ; pharmacology ; DNA Fragmentation ; drug effects ; Dose-Response Relationship, Drug ; Humans ; Liver Neoplasms ; pathology ; Proto-Oncogene Proteins c-myc ; genetics ; metabolism ; RNA, Messenger ; genetics ; metabolism ; Syzygium ; chemistry ; Telomerase ; genetics ; metabolism

Result Analysis
Print
Save
E-mail