1.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
2.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
3.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
4.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
5.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
6.Mortality of very low birth weight infants by neonatal intensive care unit workload and regional group status
Sung-Hoon CHUNG ; Chae Young KIM ; Yong-Sung CHOI ; Myung Hee LEE ; Jae Woo LIM ; Byong Sop LEE ; Ki-Soo KIM ;
Clinical and Experimental Pediatrics 2024;67(11):619-627
Background:
Very low birth weight infants (VLBWIs) continue to face high mortality risk influenced by the care quality of neonatal intensive care units (NICUs). Under-standing the impact of workload and regional differences on these rates is crucial for improving outcomes.Purpose: This study aimed to assess how the structural and staffing attributes of NICUs influence the mortality rates of VLBWIs, emphasizing the significance of the availability of medical personnel and the regional distribution of care facilities.
Methods:
Data from 69 Korean NICUs collected by the Korean Neonatal Network between January 2015 and December 2016 were retrospectively analyzed. The NICUs were classified by various parameters: capacity (small, medium, large), nurse-to-bed ratio (1–4), and regional location (A, B, C). Pediatrician staffing was also analyzed and NICUs categorized by beds per pediatrician into low (≤10), medium (11–15), and high (≥16). The NICUs were classified by mortality rates into high-performance (1st and 2nd quartiles) and low-performance (3rd and 4th quartiles). Demographic, perinatal, and neonatal outcomes were analyzed using multivariate logistic regression to explore the association between NICU characteristics and mortality rates.
Results:
This study included 4,745 VLBWIs (mean gestational age, 28.4 weeks; mean birth weight, 1,088 g; 55.4% male) and found significant variations in survival rates across NICUs linked to performance and staffing levels. High-performing NICUs, often with lower bed-to-staff ratios and advanced care levels, had higher survival rates. Notably, NICUs with 2 rather than 1 neonatologist were associated with reduced mortality rates. The study also underscored regional disparities, with NICUs in certain areas showing less favorable survival rates.
Conclusion
Adequate NICU staffing and proper facility location are key to lowering the number of VLBWI deaths. Enhancing staffing and regional healthcare equity is crucial for improving the survival of this population.
7.Mortality of very low birth weight infants by neonatal intensive care unit workload and regional group status
Sung-Hoon CHUNG ; Chae Young KIM ; Yong-Sung CHOI ; Myung Hee LEE ; Jae Woo LIM ; Byong Sop LEE ; Ki-Soo KIM ;
Clinical and Experimental Pediatrics 2024;67(11):619-627
Background:
Very low birth weight infants (VLBWIs) continue to face high mortality risk influenced by the care quality of neonatal intensive care units (NICUs). Under-standing the impact of workload and regional differences on these rates is crucial for improving outcomes.Purpose: This study aimed to assess how the structural and staffing attributes of NICUs influence the mortality rates of VLBWIs, emphasizing the significance of the availability of medical personnel and the regional distribution of care facilities.
Methods:
Data from 69 Korean NICUs collected by the Korean Neonatal Network between January 2015 and December 2016 were retrospectively analyzed. The NICUs were classified by various parameters: capacity (small, medium, large), nurse-to-bed ratio (1–4), and regional location (A, B, C). Pediatrician staffing was also analyzed and NICUs categorized by beds per pediatrician into low (≤10), medium (11–15), and high (≥16). The NICUs were classified by mortality rates into high-performance (1st and 2nd quartiles) and low-performance (3rd and 4th quartiles). Demographic, perinatal, and neonatal outcomes were analyzed using multivariate logistic regression to explore the association between NICU characteristics and mortality rates.
Results:
This study included 4,745 VLBWIs (mean gestational age, 28.4 weeks; mean birth weight, 1,088 g; 55.4% male) and found significant variations in survival rates across NICUs linked to performance and staffing levels. High-performing NICUs, often with lower bed-to-staff ratios and advanced care levels, had higher survival rates. Notably, NICUs with 2 rather than 1 neonatologist were associated with reduced mortality rates. The study also underscored regional disparities, with NICUs in certain areas showing less favorable survival rates.
Conclusion
Adequate NICU staffing and proper facility location are key to lowering the number of VLBWI deaths. Enhancing staffing and regional healthcare equity is crucial for improving the survival of this population.
8.Mortality of very low birth weight infants by neonatal intensive care unit workload and regional group status
Sung-Hoon CHUNG ; Chae Young KIM ; Yong-Sung CHOI ; Myung Hee LEE ; Jae Woo LIM ; Byong Sop LEE ; Ki-Soo KIM ;
Clinical and Experimental Pediatrics 2024;67(11):619-627
Background:
Very low birth weight infants (VLBWIs) continue to face high mortality risk influenced by the care quality of neonatal intensive care units (NICUs). Under-standing the impact of workload and regional differences on these rates is crucial for improving outcomes.Purpose: This study aimed to assess how the structural and staffing attributes of NICUs influence the mortality rates of VLBWIs, emphasizing the significance of the availability of medical personnel and the regional distribution of care facilities.
Methods:
Data from 69 Korean NICUs collected by the Korean Neonatal Network between January 2015 and December 2016 were retrospectively analyzed. The NICUs were classified by various parameters: capacity (small, medium, large), nurse-to-bed ratio (1–4), and regional location (A, B, C). Pediatrician staffing was also analyzed and NICUs categorized by beds per pediatrician into low (≤10), medium (11–15), and high (≥16). The NICUs were classified by mortality rates into high-performance (1st and 2nd quartiles) and low-performance (3rd and 4th quartiles). Demographic, perinatal, and neonatal outcomes were analyzed using multivariate logistic regression to explore the association between NICU characteristics and mortality rates.
Results:
This study included 4,745 VLBWIs (mean gestational age, 28.4 weeks; mean birth weight, 1,088 g; 55.4% male) and found significant variations in survival rates across NICUs linked to performance and staffing levels. High-performing NICUs, often with lower bed-to-staff ratios and advanced care levels, had higher survival rates. Notably, NICUs with 2 rather than 1 neonatologist were associated with reduced mortality rates. The study also underscored regional disparities, with NICUs in certain areas showing less favorable survival rates.
Conclusion
Adequate NICU staffing and proper facility location are key to lowering the number of VLBWI deaths. Enhancing staffing and regional healthcare equity is crucial for improving the survival of this population.
9.Mortality of very low birth weight infants by neonatal intensive care unit workload and regional group status
Sung-Hoon CHUNG ; Chae Young KIM ; Yong-Sung CHOI ; Myung Hee LEE ; Jae Woo LIM ; Byong Sop LEE ; Ki-Soo KIM ;
Clinical and Experimental Pediatrics 2024;67(11):619-627
Background:
Very low birth weight infants (VLBWIs) continue to face high mortality risk influenced by the care quality of neonatal intensive care units (NICUs). Under-standing the impact of workload and regional differences on these rates is crucial for improving outcomes.Purpose: This study aimed to assess how the structural and staffing attributes of NICUs influence the mortality rates of VLBWIs, emphasizing the significance of the availability of medical personnel and the regional distribution of care facilities.
Methods:
Data from 69 Korean NICUs collected by the Korean Neonatal Network between January 2015 and December 2016 were retrospectively analyzed. The NICUs were classified by various parameters: capacity (small, medium, large), nurse-to-bed ratio (1–4), and regional location (A, B, C). Pediatrician staffing was also analyzed and NICUs categorized by beds per pediatrician into low (≤10), medium (11–15), and high (≥16). The NICUs were classified by mortality rates into high-performance (1st and 2nd quartiles) and low-performance (3rd and 4th quartiles). Demographic, perinatal, and neonatal outcomes were analyzed using multivariate logistic regression to explore the association between NICU characteristics and mortality rates.
Results:
This study included 4,745 VLBWIs (mean gestational age, 28.4 weeks; mean birth weight, 1,088 g; 55.4% male) and found significant variations in survival rates across NICUs linked to performance and staffing levels. High-performing NICUs, often with lower bed-to-staff ratios and advanced care levels, had higher survival rates. Notably, NICUs with 2 rather than 1 neonatologist were associated with reduced mortality rates. The study also underscored regional disparities, with NICUs in certain areas showing less favorable survival rates.
Conclusion
Adequate NICU staffing and proper facility location are key to lowering the number of VLBWI deaths. Enhancing staffing and regional healthcare equity is crucial for improving the survival of this population.
10.Pharmacological properties of Technekitty injection (Tc-99m) in diagnosing feline hyperthyroidism
Jae Cheong LIM ; So-Young LEE ; Eun Ha CHO ; Yu Mi JUNG ; Ki Hwan PARK ; Young Uk PARK ; Sung Soo NAM ; Tae Hoon LEE ; Jae Won LEE ; Jisu SUN ; Hye Kyung CHUNG ; Yong Jin LEE ; Yeon CHAE ; Byeong-Teck KANG
Journal of Biomedical and Translational Research 2024;25(4):185-199
Thyroid scanning using technetium-99m ( 99mTc) is the gold standard for diagnosing feline hyperthyroidism. In cats with an overactive thyroid, a thyroid scan is the most appropriate imaging technique to detect and localize any hyperfunctional adenomatous thyroid tissue. In this study, the pharmacological properties of the Technekitty injection (Tc-99m), developed as a diagnostic agent for feline hyperthyroidism using 99mTc as an active ingredient, were tested in FRTL-5 thyroid follicular cell line and ICR mice. The percentage of cell uptake of the Tc-99m in FRTL-5 thyroid cells was 0.182 ± 0.018%, which was about 6 times higher compared to Clone 9 hepatocytes. This uptake decreased by 38.2% due to competitive inhibition by iodine (sodium iodide). In tissue distribution tests by using ICR mice, the highest distribution was observed in the liver, kidneys, spleen, lungs, and femur at 0.083 hours after administration, and this distribution decreased as the compound was excreted through the kidneys, the pri-mary excretory organ. Maximum distribution was confirmed at 1 hour in the small intestine, 6hours in the large intestine, and 2 hours in the thyroid gland. Additionally, the total amount excreted through urine and feces over 48 hours (2 days) was 78.80% of the injected dose, with 37.70% (47.84% of the total excretion) excreted through urine and 41.10% (52.16% of the total excretion) through feces. In conclusion, the Tc-99m has the same mechanism of action, potency, absorption, distribution, metabolism, and excretion characteristics as 99mTc used for feline hyperthyroidism in the United States, Europe, and other countries, because the Technekitty injection (Tc-99m) contains 99mTc as its sole active ingredient. Based on these results, the Technekitty injection (Tc-99m) is expected to be safely used in the clinical diagnosis of feline hyperthyroidism.

Result Analysis
Print
Save
E-mail