1.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
2.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
3.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
4.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
5.18F‑FDG PET/CT in Inflammation and Infection: Procedural Guidelineby the Korean Society of Nuclear Medicine
Joon Ho CHOI ; Yong‑Jin PARK ; Hyunjong LEE ; Hye Ryeong KWON ; Jinkyoung OH ; Chae Hong LIM ; Eun Ji HAN ; Joon Young CHOI ;
Nuclear Medicine and Molecular Imaging 2025;59(1):27-40
This guideline outlines the use of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the diagnosis and management of infectious and inflammatory diseases. It provides detailed recommendations for healthcare providers on patient preparation, imaging procedures, and the interpretation of results. Adapted from international standards and tailored to local clinical practices, the guideline emphasizes safety, quality control, and effective use of the technology in various conditions, including spinal infections, diabetic foot, osteomyelitis, vasculitis, and cardiac inflammation. The aim is to assist nuclear medicine professionals in delivering accurate diagnoses and improving patient outcomes while allowing flexibility to adapt to individual patient needs, technological advancements, and evolving medical knowledge. This document is a comprehensive resource for enhancing the quality and safety of 18F-fluoro-2-deoxyglucose positron emission tomography / computed tomography for the evaluation of infectious and inflammatory diseases.Preamble The Korean Society of Nuclear Medicine (KSNM) was established in 1961 to promote the clinical and technological advancement of nuclear medicine in South Korea, with members that include nuclear medicine physicians and associated scientists. The KSNM regularly formulates and revises procedural guidelines for nuclear medicine examinations to enhance the field and improve the quality of patient care. These guidelines are designed to support healthcare professionals in providing appropriate medical care to patients. However, they are not immutable rules or mandatory requirements for conducting examinations.Therefore, KSNM states that these guidelines should not be used in legal actions challenging a healthcare professional’s medical decisions. The ultimate judgment regarding specific procedures or appropriate measures should be made by nuclear medicine physicians, considering the unique circumstances of each case. Deviation from these guidelines does not imply substandard medical practice. Rather, reasonable judgments differing from the guidelines can be made based on the patient’s condition, available resources, and advancements in knowledge or technology. Due to the diversity and complexity of patients, it is often challenging to predict the most appropriate diagnostic and accurate therapeutic responses. Thus, adherence to these guidelines does not always guarantee an exact diagnosis or successful outcomes.The purpose of this guideline is to assist healthcare providers in making reasonable decisions and conducting effective and safe examinations based on current medical knowledge, available resources, and patient needs when performing 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) examinations for infectious/ inflammatory diseases.
6.Clinical and Genetic Spectrum of Tubulinopathy: A Single-Center Study
Hey-Joon SON ; Minhye KIM ; Hye Jin KIM ; Jae So CHO ; Soo Yeon KIM ; Byung Chan LIM ; Ki Joong KIM ; Jong-Hee CHAE ; Woo Joong KIM
Annals of Child Neurology 2024;32(2):115-121
Purpose:
Tubulinopathy represents a group of disorders caused by variants in tubulin genes, which present with a wide spectrum of brain malformations. This study was conducted to provide insight into the phenotypic and genetic spectra of tubulinopathy within the Korean pediatric population.
Methods:
Among individuals who underwent genetic testing at a pediatric neurology clinic between June 2011 and December 2021, 15 patients with tubulin gene variants were retrospectively recruited. Clinical features, genetic information, and brain imaging findings were retrospectively reviewed.
Results:
The genetic spectra of the patients included TUBA1A (n=5, 33.3%), TUBB4A (n=6, 40.0%), TUBB3 (n=2, 13.3%), TUBB (n=1, 6.7%), and TUBB2A (n=1, 6.7%) variants. Two novel mutations were identified: a c.497A>G; p.(Lys166Arg) variant in TUBA1A and a c.907G>C; p.(Ala303Pro) variant in TUBB. All 15 patients exhibited developmental delays, with a broad spectrum of severity. Other common manifestations included microcephaly (n=10; 66.7%) and seizures (n=9; 60%). A review of the neuroimaging data revealed a range of findings that were both genotype-specific and overlapping across genotypes. In cases of TUBA1A mutation (n=5), four patients (80%) presented with pachygyria and polymicrogyria, while three (60%) displayed cerebellar hypoplasia and dysplasia. All patients with TUBB4A variants (n=6) exhibited hypomyelination, and three (50%) had cerebellar dysplasia.
Conclusion
This study represents the first cohort analysis of tubulin gene mutations associated with tubulinopathy in a Korean pediatric population. It suggests that these mutations can produce a broad spectrum of neurodevelopmental and neuroimaging findings and should be considered within the differential diagnosis in relevant clinical scenarios.
7.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Part V. Pediatric Differentiated Thyroid Cancer 2024
Jung-Eun MOON ; So Won OH ; Ho-Cheol KANG ; Bon Seok KOO ; Keunyoung KIM ; Sun Wook KIM ; Won Woong KIM ; Jung-Han KIM ; Dong Gyu NA ; Sohyun PARK ; Young Joo PARK ; Jun-Ook PARK ; Ji-In BANG ; Kyorim BACK ; Youngduk SEO ; Young Shin SONG ; Seung Hoon WOO ; Ho-Ryun WON ; Chang Hwan RYU ; Sang-Woo LEE ; Eun Kyung LEE ; Joon-Hyop LEE ; Jieun LEE ; Cho Rok LEE ; Dong-Jun LIM ; Jae-Yol LIM ; Ari CHONG ; Yun Jae CHUNG ; Chae Moon HONG ; Hyungju KWON ; Young Ah LEE ;
International Journal of Thyroidology 2024;17(1):193-207
Pediatric differentiated thyroid cancers (DTCs), mostly papillary thyroid cancer (PTC, 80-90%), are diagnosed at more advanced stages with larger tumor sizes and higher rates of locoregional and/or lung metastasis. Despite the higher recurrence rates of pediatric cancers than of adult thyroid cancers, pediatric patients demonstrate a lower mortality rate and more favorable prognosis. Considering the more advanced stage at diagnosis in pediatric patients, preoperative evaluation is crucial to determine the extent of surgery required. Furthermore, if hereditary tumor syndrome is suspected, genetic testing is required. Recommendations for pediatric DTCs focus on the surgical principles, radioiodine therapy according to the postoperative risk level, treatment and follow-up of recurrent or persistent diseases, and treatment of patients with radioiodine-refractory PTCs on the basis of genetic drivers that are unique to pediatric patients.
8.Korean Thyroid Association Guidelines on the Management of Differentiated Thyroid Cancers; Overview and Summary 2024
Young Joo PARK ; Eun Kyung LEE ; Young Shin SONG ; Bon Seok KOO ; Hyungju KWON ; Keunyoung KIM ; Mijin KIM ; Bo Hyun KIM ; Won Gu KIM ; Won Bae KIM ; Won Woong KIM ; Jung-Han KIM ; Hee Kyung KIM ; Hee Young NA ; Shin Je MOON ; Jung-Eun MOON ; Sohyun PARK ; Jun-Ook PARK ; Ji-In BANG ; Kyorim BACK ; Youngduk SEO ; Dong Yeob SHIN ; Su-Jin SHIN ; Hwa Young AHN ; So Won OH ; Seung Hoon WOO ; Ho-Ryun WON ; Chang Hwan RYU ; Jee Hee YOON ; Ka Hee YI ; Min Kyoung LEE ; Sang-Woo LEE ; Seung Eun LEE ; Sihoon LEE ; Young Ah LEE ; Joon-Hyop LEE ; Ji Ye LEE ; Jieun LEE ; Cho Rok LEE ; Dong-Jun LIM ; Jae-Yol LIM ; Yun Kyung JEON ; Kyong Yeun JUNG ; Ari CHONG ; Yun Jae CHUNG ; Chan Kwon JUNG ; Kwanhoon JO ; Yoon Young CHO ; A Ram HONG ; Chae Moon HONG ; Ho-Cheol KANG ; Sun Wook KIM ; Woong Youn CHUNG ; Do Joon PARK ; Dong Gyu NA ;
International Journal of Thyroidology 2024;17(1):1-20
Differentiated thyroid cancer demonstrates a wide range of clinical presentations, from very indolent cases to those with an aggressive prognosis. Therefore, diagnosing and treating each cancer appropriately based on its risk status is important. The Korean Thyroid Association (KTA) has provided and amended the clinical guidelines for thyroid cancer management since 2007. The main changes in this revised 2024 guideline include 1) individualization of surgical extent according to pathological tests and clinical findings, 2) application of active surveillance in low-risk papillary thyroid microcarcinoma, 3) indications for minimally invasive surgery, 4) adoption of World Health Organization pathological diagnostic criteria and definition of terminology in Korean, 5) update on literature evidence of recurrence risk for initial risk stratification, 6) addition of the role of molecular testing, 7) addition of definition of initial risk stratification and targeting thyroid stimulating hormone (TSH) concentrations according to ongoing risk stratification (ORS), 8) addition of treatment of perioperative hypoparathyroidism, 9) update on systemic chemotherapy, and 10) addition of treatment for pediatric patients with thyroid cancer.
9.Early Prediction of Mortality for Septic Patients Visiting Emergency Room Based on Explainable Machine Learning: A Real-World Multicenter Study
Sang Won PARK ; Na Young YEO ; Seonguk KANG ; Taejun HA ; Tae-Hoon KIM ; DooHee LEE ; Dowon KIM ; Seheon CHOI ; Minkyu KIM ; DongHoon LEE ; DoHyeon KIM ; Woo Jin KIM ; Seung-Joon LEE ; Yeon-Jeong HEO ; Da Hye MOON ; Seon-Sook HAN ; Yoon KIM ; Hyun-Soo CHOI ; Dong Kyu OH ; Su Yeon LEE ; MiHyeon PARK ; Chae-Man LIM ; Jeongwon HEO ; On behalf of the Korean Sepsis Alliance (KSA) Investigators
Journal of Korean Medical Science 2024;39(5):e53-
Background:
Worldwide, sepsis is the leading cause of death in hospitals. If mortality rates in patients with sepsis can be predicted early, medical resources can be allocated efficiently. We constructed machine learning (ML) models to predict the mortality of patients with sepsis in a hospital emergency department.
Methods:
This study prospectively collected nationwide data from an ongoing multicenter cohort of patients with sepsis identified in the emergency department. Patients were enrolled from 19 hospitals between September 2019 and December 2020. For acquired data from 3,657 survivors and 1,455 deaths, six ML models (logistic regression, support vector machine, random forest, extreme gradient boosting [XGBoost], light gradient boosting machine, and categorical boosting [CatBoost]) were constructed using fivefold cross-validation to predict mortality. Through these models, 44 clinical variables measured on the day of admission were compared with six sequential organ failure assessment (SOFA) components (PaO 2 /FIO 2 [PF], platelets (PLT), bilirubin, cardiovascular, Glasgow Coma Scale score, and creatinine).The confidence interval (CI) was obtained by performing 10,000 repeated measurements via random sampling of the test dataset. All results were explained and interpreted using Shapley’s additive explanations (SHAP).
Results:
Of the 5,112 participants, CatBoost exhibited the highest area under the curve (AUC) of 0.800 (95% CI, 0.756–0.840) using clinical variables. Using the SOFA components for the same patient, XGBoost exhibited the highest AUC of 0.678 (95% CI, 0.626–0.730). As interpreted by SHAP, albumin, lactate, blood urea nitrogen, and international normalization ratio were determined to significantly affect the results. Additionally, PF and PLTs in the SOFA component significantly influenced the prediction results.
Conclusion
Newly established ML-based models achieved good prediction of mortality in patients with sepsis. Using several clinical variables acquired at the baseline can provide more accurate results for early predictions than using SOFA components. Additionally, the impact of each variable was identified.
10.Transradial Versus Transfemoral Access for Bifurcation Percutaneous Coronary Intervention Using SecondGeneration Drug-Eluting Stent
Jung-Hee LEE ; Young Jin YOUN ; Ho Sung JEON ; Jun-Won LEE ; Sung Gyun AHN ; Junghan YOON ; Hyeon-Cheol GWON ; Young Bin SONG ; Ki Hong CHOI ; Hyo-Soo KIM ; Woo Jung CHUN ; Seung-Ho HUR ; Chang-Wook NAM ; Yun-Kyeong CHO ; Seung Hwan HAN ; Seung-Woon RHA ; In-Ho CHAE ; Jin-Ok JEONG ; Jung Ho HEO ; Do-Sun LIM ; Jong-Seon PARK ; Myeong-Ki HONG ; Joon-Hyung DOH ; Kwang Soo CHA ; Doo-Il KIM ; Sang Yeub LEE ; Kiyuk CHANG ; Byung-Hee HWANG ; So-Yeon CHOI ; Myung Ho JEONG ; Hyun-Jong LEE
Journal of Korean Medical Science 2024;39(10):e111-
Background:
The benefits of transradial access (TRA) over transfemoral access (TFA) for bifurcation percutaneous coronary intervention (PCI) are uncertain because of the limited availability of device selection. This study aimed to compare the procedural differences and the in-hospital and long-term outcomes of TRA and TFA for bifurcation PCI using secondgeneration drug-eluting stents (DESs).
Methods:
Based on data from the Coronary Bifurcation Stenting Registry III, a retrospective registry of 2,648 patients undergoing bifurcation PCI with second-generation DES from 21 centers in South Korea, patients were categorized into the TRA group (n = 1,507) or the TFA group (n = 1,141). After propensity score matching (PSM), procedural differences, in-hospital outcomes, and device-oriented composite outcomes (DOCOs; a composite of cardiac death, target vessel-related myocardial infarction, and target lesion revascularization) were compared between the two groups (772 matched patients each group).
Results:
Despite well-balanced baseline clinical and lesion characteristics after PSM, the use of the two-stent strategy (14.2% vs. 23.7%, P = 0.001) and the incidence of in-hospital adverse outcomes, primarily driven by access site complications (2.2% vs. 4.4%, P = 0.015), were significantly lower in the TRA group than in the TFA group. At the 5-year follow-up, the incidence of DOCOs was similar between the groups (6.3% vs. 7.1%, P = 0.639).
Conclusion
The findings suggested that TRA may be safer than TFA for bifurcation PCI using second-generation DESs. Despite differences in treatment strategy, TRA was associated with similar long-term clinical outcomes as those of TFA. Therefore, TRA might be the preferred access for bifurcation PCI using second-generation DES.

Result Analysis
Print
Save
E-mail