1.Progress on Prevention and Treatment of Cerebral Small Vascular Disease Using Integrative Medicine.
Chu-Tian ZHANG ; Hui-Ling CHENG ; Kai-Li CHEN ; Zhong-Ping ZHANG ; Jia-Qiu LIN ; Shao-Jian XIAO ; Jing CAI
Chinese journal of integrative medicine 2023;29(2):186-191
Cerebral small vessel disease (CSVD) is a senile brain lesion caused by the abnormal structure and function of arterioles, venules and capillaries in the aging brain. The etiology of CSVD is complex, and disease is often asymptomatic in its early stages. However, as CSVD develops, brain disorders may occur, such as stroke, cognitive dysfunction, dyskinesia and mood disorders, and heart, kidney, eye and systemic disorders. As the population continues to age, the burden of CSVD is increasing. Moreover, there is an urgent need for better screening methods and diagnostic markers for CSVD, in addition to preventive and asymptomatic- and mild-stage treatments. Integrative medicine (IM), which combines the holistic concepts and syndrome differentiations of Chinese medicine with modern medical perspectives, has unique advantages for the prevention and treatment of CSVD. In this review, we summarize the biological markers, ultrasound and imaging features, disease-related genes and risk factors relevant to CSVD diagnosis and screening. Furthermore, we discuss IM-based CSVD prevention and treatment strategies to stimulate further research in this field.
Humans
;
Integrative Medicine
;
Brain/pathology*
;
Cerebral Small Vessel Diseases/pathology*
;
Stroke/complications*
;
Cognitive Dysfunction/complications*
;
Magnetic Resonance Imaging
2.Updates on Prevention of Hemorrhagic and Lacunar Strokes.
Hsin Hsi TSAI ; Jong S KIM ; Eric JOUVENT ; M Edip GUROL
Journal of Stroke 2018;20(2):167-179
Intracerebral hemorrhage (ICH) and lacunar infarction (LI) are the major acute clinical manifestations of cerebral small vessel diseases (cSVDs). Hypertensive small vessel disease, cerebral amyloid angiopathy, and hereditary causes, such as Cerebral Autosomal Dominant Arteriopathy with Subcortical Infarcts and Leukoencephalopathy (CADASIL), constitute the three common cSVD categories. Diagnosing the underlying vascular pathology in these patients is important because the risk and types of recurrent strokes show significant differences. Recent advances in our understanding of the cSVD-related radiological markers have improved our ability to stratify ICH risk in individual patients, which helps guide antithrombotic decisions. There are general good-practice measures for stroke prevention in patients with cSVD, such as optimal blood pressure and glycemic control, while individualized measures tailored for particular patients are often needed. Antithrombotic combinations and anticoagulants should be avoided in cSVD treatment, as they increase the risk of potentially fatal ICH without necessarily lowering LI risk in these patients. Even when indicated for a concurrent pathology, such as nonvalvular atrial fibrillation, nonpharmacological approaches should be considered in the presence of cSVD. More data are emerging regarding the presentation, clinical course, and diagnostic markers of hereditary cSVD, allowing accurate diagnosis, and therefore, guiding management of symptomatic patients. When suspicion for asymptomatic hereditary cSVD exists, the pros and cons of prescribing genetic testing should be discussed in detail in the absence of any curative treatment. Recent data regarding diagnosis, risk stratification, and specific preventive approaches for both sporadic and hereditary cSVDs are discussed in this review article.
Anticoagulants
;
Atrial Fibrillation
;
Blood Pressure
;
CADASIL
;
Cerebral Amyloid Angiopathy
;
Cerebral Hemorrhage
;
Cerebral Small Vessel Diseases
;
Diagnosis
;
Genetic Testing
;
Humans
;
Pathology
;
Stroke
;
Stroke, Lacunar*
3.Lacunar Infarction and Small Vessel Disease: Pathology and Pathophysiology.
Journal of Stroke 2015;17(1):2-6
Two major vascular pathologies underlie brain damage in patients with disease of small size penetrating brain arteries and arterioles; 1) thickening of the arterial media and 2) obstruction of the origins of penetrating arteries by parent artery intimal plaques. The media of these small vessels may be thickened by fibrinoid deposition and hypertrophy of smooth muscle and other connective tissue elements that accompanies degenerative changes in patients with hypertension and or diabetes or can contain foreign deposits as in amyloid angiopathy and genetically mediated conditions such as cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. These pathological changes lead to 2 different pathophysiologies: 1) brain ischemia in regions supplied by the affected arteries. The resultant lesions are deep small infarcts, most often involving the basal ganglia, pons, thalami and cerebral white matter. And 2) leakage of fluid causing edema and later gliosis in white matter tracts. The changes in the media and adventitia effect metalloproteinases and other substances within the matrix of the vessels and lead to abnormal blood/brain barriers in these small vessels. and chronic gliosis and atrophy of cerebral white matter.
Adventitia
;
Amyloid
;
Arteries
;
Arterioles
;
Atrophy
;
Basal Ganglia
;
Brain
;
Brain Ischemia
;
CADASIL
;
Cerebral Amyloid Angiopathy
;
Cerebral Small Vessel Diseases
;
Connective Tissue
;
Edema
;
Gliosis
;
Humans
;
Hypertension
;
Hypertrophy
;
Metalloproteases
;
Muscle, Smooth
;
Parents
;
Pathology*
;
Pons
;
Stroke, Lacunar*
;
Tunica Media