2.Comparison of biomechanical behavior of cerebral and mesenteric small arteries of simulated microgravity rats.
Jiu-Hua CHENG ; Macro BOSCOLO ; Le-Jian LIN ; Yun-Gang BAI ; Xiang ZHANG ; Jin MA ; Li-Fan ZHANG
Acta Physiologica Sinica 2009;61(4):386-394
The aim of the present study was to further elucidate the mechanisms of vascular adaptation to microgravity and its gravity-based countermeasure by a biomechanical approach. Active (the dissected vessel segment was superfused with PPS) and passive (while it was superfused with Ca(2+)-free PPS) biomechanical properties of mesenteric third-order small arteries and middle cerebral arteries isolated from 3-day simulated microgravity (SUS), countermeasure (STD, daily 1 h of -G(x) gravitation), and control (CON) groups of rats were studied. The following mechanical parameters were calculated: the overall stiffness parameter of passive vessels (beta), circumferential stress (sigma(theta))-strain (epsilon(theta)) relationship, and pressure-dependent incremental elastic modulus (E(inc,p)) of both active and passive vessels, and vascular smooth muscle (VSM) activity-dependent incremental modulus (E(inc,a)). Results from the analysis of active biomechanical properties revealed the contribution of vascular smooth muscle (VSM) tone during the early adaptation to microgravity: (1) For mesenteric small arteries, active circumferential sigma(theta) -epsilon(theta) curve of SUS group was comparable with that of the passive vessels, indicating that the function of VSM to restore the normal stress distribution is compromised; however, this mal-adaptation was fully prevented by the countermeasure of daily 1 h of -G(x) gravitation; (2) For the middle cerebral arteries, active circumferential sigma(theta) -epsilon(theta) relation of SUS group was shifted to the left side of the passive curve and epsilon(theta) was kept at a nearly constant level with the corresponding sigma(theta) being at its normal range; furthermore, the enhanced myogenic tone responsiveness was not prevented by daily short-duration -G(x). Analysis of the passive biomechanical properties has suggested remodeling changes in matrix components of different types of vessels, which might be significant if the exposure duration was further prolonged. In brief, studies of vascular biomechanics are of particular importance in elucidating the mechanisms underlying vascular adaptation to microgravity and its gravity-based countermeasure.
Animals
;
Biomechanical Phenomena
;
Mesenteric Arteries
;
physiology
;
Middle Cerebral Artery
;
physiology
;
Muscle, Smooth, Vascular
;
physiology
;
Pressure
;
Rats
;
Weightlessness Simulation
3.The technique of simultaneous recording calcium transients and spontaneous transient outward currents in arterial smooth muscle cells.
Peng-Yun LI ; Xiao-Rong ZENG ; Ming LEI ; Zhi-Fei LIU ; Yan YANG
Acta Physiologica Sinica 2010;62(3):269-274
Laser scanning confocal microscopy (LSCM) and whole-cell perforated patch-clamp techniques were combined to study simultaneously the changes of intracellular signal molecules and membrane currents. Intracellular calcium transients and spontaneous transient outward currents (STOCs) were recorded simultaneously in freshly isolated mouse cerebral artery smooth muscle cells. The cells loaded with fluo-4/AM were scanned with the confocal line-scan mode. Triggering voltage pulses derived from an EPC-10 patch clamp amplifier triggered the confocal line scan. The results showed that STOCs and intracellular calcium transients could be simultaneously recorded in the same cell. This technique will be useful in studies of diseases caused by impairments of intracellular Ca(2+) signaling and related ionic channel activities, or vice versa.
Animals
;
Calcium Signaling
;
Cerebral Arteries
;
cytology
;
Mice
;
Myocytes, Smooth Muscle
;
physiology
;
Patch-Clamp Techniques
4.The effects of pH0 on electrophysiological properties of VSMCs in brain artery of spontaneously hypertensive rats.
Yuan-yuan SHANG ; Jun-qiang SI ; Li LI ; Yu LIAN ; Ke-tao MA
Chinese Journal of Applied Physiology 2012;28(3):268-270
OBJECTIVETo investigate the effects of pH0 on the electrophysiological properties of vascular smooth muscle cells (VSMCs) in brain artery of spontaneously hypertension rats (SHR).
METHODSWe studied the effects and the ion mechanism of pH0 on whole-cell membrane current of VSMCs in brain artery of 200 - 250 g SHR by whole-cell patch clamp recordings.
RESULTS1. Acidic pH0 could inhibit the outward current of VSMCs of brain artery in SHR in a voltage-dependent manner. It induced a more pronounced inhibition of the outward current from 0 to + 60mV; 2. In the presence of 1 mmol/L TEA, the inhibition of acidic pH0 on the outward current of VSMCs of brain artery was inhibited.
CONCLUSIONThe changes of outward current of VSMCs of brain artery in SHR induced by pH0 may be connected with BKCa channel.
Animals ; Cerebral Arteries ; cytology ; Electrophysiological Phenomena ; Extracellular Fluid ; physiology ; Hydrogen-Ion Concentration ; Muscle, Smooth, Vascular ; physiology ; Rats ; Rats, Inbred SHR
5.Cerebral hemodynamic changes induced by sympathetic stimulation tests.
Yonsei Medical Journal 1998;39(4):322-327
Sympathetic neuronal activity is primarily responsible for the neurogenic control of cerebral autoregulation. The stimulation of sympathetic nerves causes both large arterial constriction and small vessel dilation in experimental animals. However, the role of the sympathetic nervous system in the control of cerebral hemodynamics has yet to be clarified in humans. In order to assess the effect of sympathetic activation on human cerebral hemodynamics, we performed a simultaneous transcranial Doppler (TCD) monitoring of bilateral middle cerebral arterial flow velocity in 16 healthy male volunteers (mean age 26) during well-known sympathetic activation measures such as isometric hand-grip exercise (IHE) and cold pressor test (CPT). Blood pressure was checked manually before and at each minute during tests. The mean arterial pressure (MAP) was calculated as (systolic pressure + 2 X diastolic pressure)/3. There was a significant increase in MCA flow velocities during both sympathetic activation tests. The percent increase of diastolic velocity (36% with IHE and 24% with CPT) was significantly higher than systolic velocity (21% with IHE and 9% with CPT). The pulsatility index was significantly decreased during the tests (from 0.75 to 0.58 with IHE and from 0.81 to 0.63 with CPT). These results suggest that sympathetic activation increases MCA flow velocities, related with a reduction in small vessel resistance and/or a constriction of large arteries.
Adult
;
Blood Flow Velocity
;
Carbon Dioxide/blood
;
Cerebral Arteries/physiology*
;
Cerebrovascular Circulation*
;
Hemodynamics
;
Human
;
Male
;
Sympathetic Nervous System/physiology*
6.Fetal Hemodynamics and Fetal Growth Indices by Ultrasound in Late Pregnancy and Birth Weight in Gestational Diabetes Mellitus.
Fang LIU ; Yong LIU ; Ya-Ping LAI ; Xiao-Ning GU ; Dong-Mei LIU ; Min YANG
Chinese Medical Journal 2016;129(17):2109-2114
BACKGROUNDThe offspring of women with gestational diabetes mellitus (GDM) are prone to macrosomia. However, birth weight is difficult to be correctly estimated by ultrasound because of fetal asymmetric growth characteristics. This study aimed to investigate the correlations between fetal hemodynamics, fetal growth indices in late pregnancy, and birth weight in GDM.
METHODSA total of 147 women with GDM and 124 normal controls (NC) were enrolled in this study. Fetal hemodynamic indices, including the systolic/diastolic ratio (S/D), resistance index (RI), pulsatility index (PI) of umbilical artery (UA), middle cerebral artery (MCA), and renal artery (RA), were collected. Fetal growth indices, including biparietal diameter (BPD), head circumference (HC), abdominal circumference (AC), and femur length, were also measured by ultrasound. Birth weight, newborn gender, and maternal clinical data were collected.
RESULTSThe independent samples t-test showed that BPD, HC, and AC were larger in GDM than in NC (P < 0.05). Fetal hemodynamic indices of the UA and MCA were lower (P < 0.05), but those of the RA were higher (P < 0.001) in GDM than in NC. Birth weight was higher in GDM than in NC (P < 0.001). Pearson's correlation analysis showed that hemodynamic indices of the UA were negatively correlated with birth weight, BPD, HC, and AC in both groups (P < 0.05). MCA (S/D, PI, and RI) was negatively correlated with birth weight, HC, and AC in GDM (r = -0.164, -0.206, -0.200, -0.226, -0.189, -0.179, -0.196, -0.177, and - 0.172, respectively, P< 0.05), but there were no correlations in NC (P > 0.05). RA (S/D, PI, and RI) was positively correlated with birth weight in GDM (r = 0.168, 0.207, and 0.184, respectively, P< 0.05), but there were no correlations in NC (P > 0.05).
CONCLUSIONFetal hemodynamic indices in late pregnancy might be helpful for estimating newborn birth weight in women with GDM.
Adult ; Birth Weight ; physiology ; Cerebral Arteries ; physiology ; Diabetes, Gestational ; physiopathology ; Female ; Fetal Development ; physiology ; Hemodynamics ; physiology ; Humans ; Infant, Newborn ; Male ; Pregnancy ; Pregnancy Outcome ; Renal Artery ; physiology ; Ultrasonography, Prenatal ; Umbilical Arteries ; physiology
7.Mitochondrial Oxidative Stress Enhances Vasoconstriction by Altering Calcium Homeostasis in Cerebrovascular Smooth Muscle Cells under Simulated Microgravity.
Zi Fan LIU ; Hai Ming WANG ; Min JIANG ; Lin WANG ; Le Jian LIN ; Yun Zhang ZHAO ; Jun Jie SHAO ; Jing Jing ZHOU ; Man Jiang XIE ; Xin LI ; Ran ZHANG
Biomedical and Environmental Sciences 2021;34(3):203-212
Objective:
Exposure to microgravity results in postflight cardiovascular deconditioning in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process. To elucidate the mechanism for this condition, we investigated whether mitochondrial oxidative stress regulates calcium homeostasis and vasoconstriction in hindlimb unweighted (HU) rat cerebral arteries.
Methods:
Three-week HU was used to simulate microgravity in rats. The contractile responses to vasoconstrictors, mitochondrial fission/fusion, Ca
Results:
An increase of cytoplasmic Ca
Conclusion
The present results suggest that mitochondrial oxidative stress enhances cerebral vasoconstriction by regulating calcium homeostasis during simulated microgravity.
Animals
;
Calcium/metabolism*
;
Cerebral Arteries
;
Homeostasis
;
Male
;
Mitochondria/physiology*
;
Myocytes, Smooth Muscle/physiology*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Vasoconstriction/physiology*
;
Weightlessness Simulation
8.Comparison of membrane current of vascular smooth muscle cells in brain artery of spontaneously hypertensive rats and Wistar rats.
Lei ZHAO ; Yuan-Yuan SHANG ; Jun-Qiang SI ; Xin-Zhi LI ; Li LI ; Zhong-Shuang ZHANG ; Ke-Tao MA
Chinese Journal of Applied Physiology 2013;29(1):25-28
OBJECTIVETo investigate the difference in membrane current of vascular smooth muscle cells (VSMCs) in brain artery (BA) of spontaneously hypertensive rats (SHR) and Wistar rats.
METHODSWe compared the properties of spontaneous transient outward K+ currents (STOCs), the density and composition of current of VSMCs in BA of SHR and Wistar rats by whole-cell patch clamp technique.
RESULTS(1) When the command voltage was 0, + 20, + 40 and + 60 mV respectively, the current densities of VSMCs in BA of SHR and Wistar rats were significant different (P < 0.01). (2) The whole-cell current of VSMCs was partly inhibited by 1 mmol/L4-AP (voltage-gated K+ channel blocker) or 1 mmol/L TEA (big conductance Ca(2+)-activated K+ channel blocker) respectively. (3) The frequency and amplitude of STOCs in SHR were faster and bigger than those in Wistar rats. 1 mmol/L TEA almostly inhibited the STOCs, but not by 4-AP.
CONCLUSIONThese results suggest that the current densities of VSMCs in BA of SHR and Wistar rats are significant different, the outward current of VSMCs in BA of SHR and Wistar rats are composed by Kv and BK(Ca). SHR express more STOCs mediated by BK(Ca), than Wistar rats.
Animals ; Cerebral Arteries ; cytology ; physiology ; Membrane Potentials ; physiology ; Muscle, Smooth, Vascular ; cytology ; physiology ; Myocytes, Smooth Muscle ; physiology ; Patch-Clamp Techniques ; Potassium Channels, Calcium-Activated ; physiology ; Potassium Channels, Voltage-Gated ; physiology ; Rats ; Rats, Inbred SHR ; Rats, Wistar
9.Transcranial Doppler ultrasound analysis of resistive index in rostral and caudal cerebral arteries in dogs.
Minho SEO ; Hojung CHOI ; Kichang LEE ; Mincheol CHOI ; Junghee YOON
Journal of Veterinary Science 2005;6(1):61-66
Transcranial Doppler (TCD) was carried out to determine the resistive index (RI) values of normal canine cerebral arteries and its reproducibility and to evaluate the change of cerebral vascular resistance following diuretics administration. RI values of rostral cerebral artery (RCA) were compared between fontanelle window and temporal window. Normal ranges and reproducibility of the RI values were examined in the rostal cerebral artery (RCA) and caudal cerebral artery (CCA). And after administration of diuretics, TCD-derived RI values were measured at RCA and CCA. Cerebral vascular RI values of RCA and CCA were 0.55 +/- 0.05 and 0.55 +/- 0.03 in the normal dogs, respectively. There was no significant difference of RI between male and female; between fontanelle window and temporal window. Reproducibility of RI measurements between intraobserver and interobserver were relatively high. The RI of RCA and CCA were significantly increased 15 minutes after mannitol administration (p<0.01) and returned to baseline values by 30 minutes, but it did not significantly change after furosemide and saline administration. The results suggest that TCD is a useful test which can obtain reproducible results from any window and has the advantage of detecting subtle changes in cerebral vascular resistance.
Animals
;
Cerebral Arteries/drug effects/*ultrasonography
;
Diuretics/pharmacology
;
Dogs/*physiology
;
Feasibility Studies
;
Furosemide/pharmacology
;
Mannitol/pharmacology
;
Reference Values
;
Reproducibility of Results
;
Ultrasonography, Doppler/*veterinary
;
Vascular Resistance/drug effects/*physiology
10.Short-term simulated weightlessness enhances response of L-type calcium channel to angiotensin II in cerebral vascular smooth muscle cells in rats.
Jun-hui XUE ; Xiao-cheng WANG ; Fang GAO ; Yun-gang BAI ; Lei ZHANG ; Li LIU ; Zuo-ming ZHANG
Acta Physiologica Sinica 2011;63(1):81-88
Some studies suggest that the calcium channels and rennin-angiotensin system (RAS) play pivotal roles in the region-specific vascular adaptation due to simulated weightlessness. This study was designed to clarify if angiotensin II (Ang II) was involved in the adaptational change of the L-type calcium channel (Ca(L)) in the cerebral arterial vascular smooth muscle cells (VSMCs) under simulated weightlessness. Tail suspension (SUS) for 3 d was used to simulate immediate early cardiovascular changes to weightlessness. Then VSMCs in cerebral basilar artery were enzymatically isolated using papain, and Ca(L) current (barium instead of calcium as current carrier) in VSMCs was measured by whole-cell patch-clamp techniques. The results showed that 3-day simulated weightlessness significantly increased current density of Ca(L). However, I-V relationships of normalized peak current densities and steady-state activation curves of Ca(L) were not affected by simulated weightlessness. Although Ang II significantly increased current densities of Ca(L) in both SUS and control rats, the increase of Ca(L) current density in SUS rats was much more than that in control rats. These results suggest that 3-day simulated weightlessness induces the adaptational change of Ca(L) in cerebral VSMCs including increased response to Ang II, indicating that Ang II may play an important role in the adaptational change of cerebral arteries under microgravity.
Adaptation, Physiological
;
Angiotensin II
;
physiology
;
Animals
;
Calcium Channels, L-Type
;
physiology
;
Cerebral Arteries
;
cytology
;
physiology
;
Hindlimb Suspension
;
Male
;
Muscle, Smooth, Vascular
;
cytology
;
physiology
;
Myocytes, Smooth Muscle
;
metabolism
;
physiology
;
Rats
;
Rats, Sprague-Dawley
;
Time Factors
;
Weightlessness Simulation