1.Glutamate and GABA concentrations in the cerebellum of novel ataxic mutant Pogo mice.
Ki Hyung KIM ; Jeoung Hee HA ; Seung Hyuk CHUNG ; Chul Tae KIM ; Sun Kyung KIM ; Byung Hwa HYUN ; Kazuhiko SAWADA ; Yoshihiro FUKUI ; Il Kwon PARK ; Geun jwa LEE ; Bum Kyeong KIM ; Nam Seob LEE ; Young Gil JEONG
Journal of Veterinary Science 2003;4(3):209-212
The Pogo mouse is an autosomal recessive ataxic mutant that arose spontaneously in the inbred KJR/MsKist strain derived originally from Korean wild mice. The ataxic phenotype is characterized by difficulty in maintaining posture and side to side stability, faulty coordination between limbs and trunk, and the consequent inability to walk straight. In the present study, the cerebellar concentrations of glutamate and GABA were analyzed, since glutamate is a most prevalent excitatory neurotransmitter whereas gammar-aminobutyric acid (GABA) is one of the most abundant inhibitory neurotransmitters, which may be the main neurotransmitters related with the ataxia and epilepsy. The concentration of glutamate of cerebellum decreased significantly in ataxic mutant Pogo mouse compared to those of control mouse. However, GABA concentration was not decrease. These results suggested that the decrease in glutamate concentration may contribute to ataxia in mutant Pogo mouse.
Animals
;
Calcium-Binding Protein, Vitamin D-Dependent/metabolism
;
Cerebellum/*metabolism/pathology
;
Gait Ataxia/*metabolism/pathology
;
Glutamic Acid/*metabolism
;
Immunohistochemistry
;
Mice
;
Mice, Mutant Strains
;
gamma-Aminobutyric Acid/*metabolism
2.Reactive Astrocytes Expressing Intense Estrogen Receptor-alpha Immunoreactivities Have Much Elongated Cytoplasmic Processes: An Autopsy Case of Human Cerebellar Tissue with Multiple Genitourinary and Gastrointestinal Anomalies.
Eo Jin KIM ; Chang Seok OH ; Jaehyup KIM ; Wu Ho KIM ; Yoon Hee CHUNG ; Dong Hoon SHIN
Journal of Korean Medical Science 2007;22(5):936-941
We performed an immunohistochemical study on the estrogen receptor alpha (ER-alpha) distribution in the cerebellum of a human neonate with multiple congenital anomalies, that had been acquired during autopsy. Although the exact pathology in the brain was not clearly elucidated in this study, an unidentified stressful condition might have induced the astrocytes into reactive states. In this immunohistochemical study on the neonatal cerebellum with multiple congenital anomalies, intense ER-alpha immunoreactivities (IRs) were localized mainly within the white matter even though ER-alpha IRs were known to be mainly localized in neurons. Double immunohistochemical staining showed that ER-alpha IR cells were reactive astrocytes, but not neurons. Interestingly, there were differences in the process length among the reactive astrocytes showing ER-alpha IRs. Our quantitative data confirmed that among the glial fibrillary acidic protein (GFAP)-expressing reactive astrocytes, the cells exhibiting intense ER-alpha IRs have much longer cytoplasmic processes and relatively weaker GFAP IRs. Taken together, the elongated processes of reactive astrocytes might be due to decreased expression of GFAP, which might be induced by elevated expression of ER-alpha even though the elucidation of the exact mechanism needs further studies.
Abnormalities, Multiple/*pathology
;
Astrocytes/*metabolism
;
Autopsy
;
Brain/pathology
;
Cerebellum/*metabolism
;
Cytoplasm/metabolism
;
Estrogen Receptor alpha/*metabolism
;
Female
;
Gastrointestinal Diseases/congenital/*pathology
;
*Gene Expression Regulation
;
Glial Fibrillary Acidic Protein/metabolism
;
Humans
;
Immunohistochemistry/methods
;
Infant, Newborn
;
Urogenital Abnormalities/*pathology
3.Expression of caspase-3 and HAX-1 after cerebral contusion in rat.
Zhou-Ru LI ; Dao-Hui TENG ; Guo-Kai DONG ; Wen-Jiang YIN ; Hong-Xing CAI
Journal of Forensic Medicine 2015;31(1):7-14
OBJECTIVE:
To observe the expression pattern of caspase-3 and HCLS1-associated protein X-1 (HAX-1) at different time after cerebral contusion in rat, and explore the new method for estimating the injury interval.
METHODS:
The cerebral contusion model was established using adult SD male rats. Then the rats were randomly allocated into 8 groups: 2 h, 6 h, 12 h, 1 d, 3 d, and 7 d after cerebral contusion, sham-operation and normal control. Expression of caspase-3 and HAX-1 protein after cerebral contusion in rat was detected by Western blotting. Laser scanning confocal microscope was used to observe the number of HAX-1 positive cells and TUNEL-stained cells after cerebral contusion.
RESULTS:
The expression of caspase-3 increased parallelly with the time after cerebral contusion and reached the peak value on 3 d. The expression of caspase-3 decreased gradually and still maintained a high level expression on 7 d (P < 0.05). The expression of HAX-1 positive cell went up after injury, and reached the peak value at 6 h (P < 0.05), then turned down gradually after 12 h and went out of detection after 3 d. The number of TUNEL-stained cells increased obviously at 2 h and reached the peak value on 3 d. The number of TUNEL-stained apoptotic cells decreased gradually and still maintained a high level expression on 7 d (P < 0.05).
CONCLUSION
The expression of caspase-3 and HAX-1 after cerebral contusion has time sequential regularity, which may provide new evidence for forensic diagnosis of cerebral contusion interval.
Animals
;
Blotting, Western
;
Brain Injuries/pathology*
;
Carrier Proteins/metabolism*
;
Caspase 3/metabolism*
;
Cerebellum/pathology*
;
In Situ Nick-End Labeling
;
Intracellular Signaling Peptides and Proteins
;
Male
;
Rats
;
Rats, Sprague-Dawley
4.Potassium Bromate-induced Changes in the Adult Mouse Cerebellum Are Ameliorated by Vanillin.
Hajer BEN SAAD ; Dorra DRISS ; Imen JABALLI ; Hanen GHOZZI ; Ons BOUDAWARA ; Michael DROGUET ; Christian MAGNÉ ; Monsef NASRI ; Khaled Mounir ZEGHAL ; Ahmed HAKIM ; Ibtissem BEN AMARA
Biomedical and Environmental Sciences 2018;31(2):115-125
OBJECTIVE:
The current study aimed to elucidate the effect of vanillin on behavioral changes, oxidative stress, and histopathological changes induced by potassium bromate (KBrO3), an environmental pollutant, in the cerebellum of adult mice.
METHODS:
The animals were divided into four groups: group 1 served as a control, group 2 received KBrO3, group 3 received KBrO3 and vanillin, and group 4 received only vanillin. We then measured behavioral changes, oxidative stress, and molecular and histological changes in the cerebellum.
RESULTS:
We observed significant behavioral changes in KBrO3-exposed mice. When investigating redox homeostasis in the cerebellum, we found that mice treated with KBrO3 had increased lipid peroxidation and protein oxidation in the cerebellum. These effects were accompanied by decreased Na+-K+ and Mg2+ ATPase activity and antioxidant enzyme gene expression when compared to the control group. Additionally, there was a significant increase in cytokine gene expression in KBrO3-treated mice. Microscopy revealed that KBrO3 intoxication resulted in numerous degenerative changes in the cerebellum that were substantially ameliorated by vanillin supplementation. Co-administration of vanillin blocked the biochemical and molecular anomalies induced by KBrO3.
CONCLUSION
Our results demonstrate that vanillin is a potential therapeutic agent for oxidative stress associated with neurodegenerative diseases.
Animals
;
Antioxidants
;
metabolism
;
Behavior, Animal
;
drug effects
;
Benzaldehydes
;
pharmacology
;
Bromates
;
toxicity
;
Cerebellum
;
drug effects
;
metabolism
;
pathology
;
Cytokines
;
genetics
;
metabolism
;
Environmental Pollutants
;
toxicity
;
Gene Expression
;
drug effects
;
Lipid Peroxidation
;
drug effects
;
Mice
;
Oxidative Stress
;
drug effects
;
Rotarod Performance Test
5.The Neuroradiological Findings of Children with Developmental Language Disorder.
Sang Hee IM ; Eun Sook PARK ; Deog Young KIM ; Dong Ho SONG ; Jong Doo LEE
Yonsei Medical Journal 2007;48(3):405-411
PURPOSE: To investigate the general characteristics of glucose metabolism distribution and the functional deficit in the brain of children with developmental language delay (DLD), we compared functional neuroradiological studies such as positron emission tomography (PET) of a patient group of DLD children and a control group of attention- deficit hyperactivity disorder (ADHD) children. PATIENTS AND METHODS: Seventeen DLD children and 10 ADHD children under 10 years of age were recruited and divided into separate groups consisting of children less than 5 years of age or between 5 and 10 years of age. The PET findings of 4 DLD children and 6 control children whose ages ranged from 5 to 10 years were compared by Statistical Parametric Mapping (SPM) analysis. RESULTS: All of the DLD children revealed grossly normal findings in brain MRIs, however, 87.5% of them showed grossly abnormal findings in their PET studies. Abnormal findings were most frequent in the thalamus. The patient group showed significantly decreased glucose metabolism in both frontal, temporal and right parietal areas (p < 0.005) and significantly increased metabolism in both occipital areas (p < 0.05) as compared to the control group. CONCLUSION: This study reveals that DLD children may show abnormal findings on functional neuroradiological studies, even though structural neuroradiological studies such as a brain MRI do not show any abnormal findings. Frequent abnormal findings on functional neuroradiological studies of DLD children, especially in the subcortical area, suggests that further research with quantitative assessments of functional neuroradiological studies recruiting more DLD children and age-matched normal controls could be helpful for understanding the pathophysiology of DLD and other disorders confined to the developmental disorder spectrum.
Attention Deficit Disorder with Hyperactivity/metabolism/*pathology
;
Basal Ganglia/abnormalities/metabolism/radionuclide imaging
;
Brain/*abnormalities/metabolism/radionuclide imaging
;
Caudate Nucleus/abnormalities/metabolism/radionuclide imaging
;
Cerebellum/abnormalities/metabolism/radionuclide imaging
;
Child
;
Child, Preschool
;
Glucose/metabolism
;
Humans
;
Language Development Disorders/metabolism/*pathology
;
Magnetic Resonance Imaging
;
Positron-Emission Tomography
;
Thalamus/abnormalities/metabolism/radionuclide imaging
6.Papillary cystadenoma of epididymis in von Hippel-Lindau syndrome: report of a case.
Min-hong PAN ; Qin-he FAN ; Yan ZHU ; Mei-ning YU
Chinese Journal of Pathology 2012;41(2):125-126
Cerebellum
;
surgery
;
Cystadenoma, Papillary
;
complications
;
pathology
;
surgery
;
Epididymis
;
pathology
;
surgery
;
Follow-Up Studies
;
Genital Neoplasms, Male
;
complications
;
pathology
;
surgery
;
Humans
;
Keratin-7
;
metabolism
;
Kidney
;
surgery
;
Male
;
Middle Aged
;
Mucin-1
;
metabolism
;
Vimentin
;
metabolism
;
von Hippel-Lindau Disease
;
complications
;
metabolism
;
pathology
;
surgery
7.Long non-coding RNA Gm15577 is involved in mouse cerebellar neurogenesis.
Yongsong YUE ; Weilong ZHANG ; Chunying LIU ; Yamei NIU ; Weimin TONG
Chinese Journal of Pathology 2015;44(7):504-508
OBJECTIVETo identify novel lncRNAs involved in cerebellar neurogenesis using neuronal specific Nbs1-deficient (Nbs1(CNS-del)) mouse model.
METHODSMicroarray analysis was performed to identify differentially expressed lncRNAs between Nbs1(CNS-ctr) and Nbs1(CNS-del) mice. Expression profiles of lncRNA Gm15577 and coding gene Negr1 in mice, primary cerebellar culture and cell lines were measured using RT-qPCR. Subcellular fractionation was performed to determine the subcellular localization of Gm15577.
RESULTSGm15577 was specifically expressed in mice cerebellum in a developmentally regulated manner, which could be abolished upon Nbs1-deficiency. Gm15577 was located in the intronic region of Negr1 in a reversed orientation. Gm15577 modulated the RNA expression of Negr1, Shh and β-catenin. NEGR1 had a distinct expression pattern between normal and medulloblastoma patients.
CONCLUSIONGm15577 may modulate cerebellar granule cell proliferation and differentiation by targeting Negr1, and their dysfunctions or abnormal expression may be related to tumorigenesis of medulloblastoma.
Animals ; Cell Differentiation ; Cell Proliferation ; Cell Transformation, Neoplastic ; Cerebellar Neoplasms ; pathology ; Cerebellum ; cytology ; physiology ; Disease Models, Animal ; Humans ; Introns ; Medulloblastoma ; pathology ; Mice ; Mice, Knockout ; Neurogenesis ; Neurons ; physiology ; RNA, Long Noncoding ; metabolism
8.Inhibition of mitochondria responsible for the anti-apoptotic effects of melatonin during ischemia-reperfusion.
Yi-xiang HAN ; Sheng-hui ZHANG ; Xi-ming WANG ; Jian-bo WU
Journal of Zhejiang University. Science. B 2006;7(2):142-147
OBJECTIVETo investigate a possible mechanism responsible for anti-apoptotic effects of melatonin and provide theoretical evidences for clinical therapy.
METHODSIschemia-reperfusion mediated neuronal cell injury model was constructed in cerebellar granule neurons (CGNs) by deprivation of glucose, serum and oxygen in media. After ischemia, melatonin was added to the test groups to reach differential concentration during reperfusion. DNA fragmentation, mitochondrial transmembrane potential, mitochondrial cytochrome c release and caspase-3 activity were observed after subjecting cerebellar granule neurons to oxygen-glucose deprivation (OGD).
RESULTSThe results showed that OGD induced typical cell apoptosis change, DNA ladder and apoptosis-related alterations in mitochondrial functions including depression of mitochondrial transmembrane potential (its maximal protection ratio was 73.26%) and release of cytochrome c (its maximal inhibition ratio was 42.52%) and the subsequent activation of caspase-3 (its maximal protection ratio was 59.32%) in cytoplasm. Melatonin reduced DNA damage and inhibited release of mitochondrial cytochrome c and activation of caspase-3. Melatonin can strongly prevent the OGD-induced loss of the mitochondria membrane potential.
CONCLUSIONOur findings suggested that the direct inhibition of mitochondrial pathway might essentially contribute to its anti-apoptotic effects in neuronal ischemia-reperfusion.
Animals ; Apoptosis ; Blotting, Western ; Caspase 3 ; Caspases ; metabolism ; Cerebellum ; pathology ; Cytochromes c ; metabolism ; Cytoplasm ; metabolism ; DNA Fragmentation ; Glucose ; metabolism ; Immunoblotting ; Melatonin ; metabolism ; pharmacology ; Membrane Potentials ; Mitochondria ; metabolism ; Neurons ; metabolism ; Nitric Oxide Synthase Type I ; metabolism ; Oxygen ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reperfusion ; Reperfusion Injury ; Time Factors
9.Familial Hemiplegic Migraine with Prolonged Coma and Cerebellar Atrophy: CACNA1A T666M Mutation in a Korean Family.
Kyung Ho CHOI ; Jang Su KIM ; Seo Young LEE ; Suk Won RYU ; Sam Su KIM ; Seung Hwan LEE ; Sunghun KIM ; Hee Kwon PARK
Journal of Korean Medical Science 2012;27(9):1124-1127
We report the first Korean patient with familial hemiplegic migraine type 1, with clinical and multimodal imaging findings. A 43-yr-old man was admitted for right hemianopia and aphasia, followed by coma. MRI showed only cerebellar atrophy. CT angiography showed mild vasodilation of intracranial blood vessels and increased vascularity in the left hemisphere and perfusion-weighted imaging showed elevated cerebral blood flow. Gene analysis of the patient and his mother led to the identification of a heterozygous point mutation (1997C-->T, T666M) in exon 16 of the CACNA1A gene. Familial hemiplegic migraine should be considered in patients with episodic neurological dysfunction with cerebellar atrophy.
Asian Continental Ancestry Group/*genetics
;
Atrophy/genetics/metabolism
;
Calcium Channels/*genetics
;
Cerebellum/blood supply/*pathology
;
Cerebral Angiography
;
Coma/*diagnosis
;
Exons
;
Heterozygote
;
Humans
;
Magnetic Resonance Imaging
;
Male
;
Migraine with Aura/*diagnosis/genetics
;
Point Mutation
;
Republic of Korea
;
Tomography, X-Ray Computed
10.Acrylamide-induced Subacute Neurotoxic Effects on the Cerebral Cortex and Cerebellum at the Synapse Level in Rats.
Bin ZHANG ; Hua SHAO ; Xiu Hui WANG ; Xiao CHEN ; Zhong Sheng LI ; Peng CAO ; Dan ZHU ; Yi Guang YANG ; Jing Wei XIAO ; Bin LI
Biomedical and Environmental Sciences 2017;30(6):432-443
OBJECTIVETo investigate acrylamide (ACR)-induced subacute neurotoxic effects on the central nervous system (CNS) at the synapse level in rats.
METHODSThirty-six Sprague Dawley (SD) rats were randomized into three groups, (1) a 30 mg/kg ACR-treated group, (2) a 50 mg/kg ACR-treated group, and (3) a normal saline (NS)-treated control group. Body weight and neurological changes were recorded each day. At the end of the test, cerebral cortex and cerebellum tissues were harvested and viewed using light and electron microscopy. Additionally, the expression of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were investigated.
RESULTSThe 50 mg/kg ACR-treated rats showed a significant reduction in body weight compared with untreated individuals (P < 0.05). Rats exposed to ACR showed a significant increase in gait scores compared with the NS control group (P < 0.05). Histological examination indicated neuronal structural damage in the 50 mg/kg ACR treatment group. The active zone distance (AZD) and the nearest neighbor distance (NND) of synaptic vesicles in the cerebral cortex and cerebellum were increased in both the 30 mg/kg and 50 mg/kg ACR treatment groups. The ratio of the distribution of synaptic vesicles in the readily releasable pool (RRP) was decreased. Furthermore, the expression levels of Synapsin I and P-Synapsin I in the cerebral cortex and cerebellum were decreased in both the 30 mg/kg and 50 mg/kg ACR treatment groups.
CONCLUSIONSubacute ACR exposure contributes to neuropathy in the rat CNS. Functional damage of synaptic proteins and vesicles may be a mechanism of ACR neurotoxicity.
Acrylamide ; toxicity ; Animals ; Cerebellum ; cytology ; drug effects ; Cerebral Cortex ; cytology ; drug effects ; Drug Administration Schedule ; Gait ; Gene Expression Regulation ; drug effects ; Male ; Neurons ; drug effects ; Neurotoxicity Syndromes ; pathology ; Rats ; Rats, Sprague-Dawley ; Synapses ; drug effects ; Synapsins ; genetics ; metabolism ; Synaptic Vesicles ; drug effects ; physiology ; Weight Loss ; drug effects