1.Structure of myelin in the central nervous system and another possible driving force for its formation-myelin compaction.
Qi SHAO ; Simin CHEN ; Tian XU ; Yuyu SHI ; Zijin SUN ; Qingguo WANG ; Xueqian WANG ; Fafeng CHENG
Journal of Zhejiang University. Science. B 2025;26(4):303-316
Myelin formation is considered the last true "invention" in the evolution of vertebrate nervous system cell structure. The rapid jumping pulse propagation achieved by myelin enables the high conduction speed that is the basis of human movement, sensation, and cognitive function. As a key structure in the brain, white matter is the gathering place of myelin. However, with age, white matter-associated functions become abnormal and a large number of myelin sheaths undergo degenerative changes, causing serious neurological and cognitive disorders. Despite the extensive time and effort invested in exploring myelination and its functions, numerous unresolved issues and challenges persist. In-depth exploration of the functional role of myelin may bring new inspiration for the treatment of central nervous system (CNS) diseases and even mental illnesses. In this study, we conducted a comprehensive examination of the structure and key molecules of the myelin in the CNS, delving into its formation process. Specifically, we propose a new hypothesis regarding the source of power for myelin expansion in which membrane compaction may serve as a driving force for myelin extension. The implications of this hypothesis could provide valuable insights into the pathophysiology of diseases involving myelin malfunction and open new avenues for therapeutic intervention in myelin-related disorders.
Myelin Sheath/metabolism*
;
Humans
;
Central Nervous System/metabolism*
;
Animals
2.Advances in inhibitory ion channel glycine receptors.
Xu-Ke PANG ; Si CHEN ; Xiang-Xian MA ; Yi-Nuo XU ; Wei-Jie BAI ; Chong-Lei FU ; Gui-Chang ZOU
Acta Physiologica Sinica 2024;76(6):908-916
Glycine receptors (GlyRs) belong to the ligand-gated ion channel receptor superfamily and are widely distributed throughout the central nervous system. GlyRs are essential for maintaining visual, auditory, sensory and motor functions, and abnormalities in its structure and function can lead to various neurological disorders. This review aims to provide an extensive analysis of the structure, function and regulatory mechanisms of GlyRs, and evaluate its role in various central nervous system diseases. Ultimately, this review will provide theoretical support for the development of novel drugs specifically targeting GlyRs.
Receptors, Glycine/physiology*
;
Humans
;
Animals
;
Central Nervous System Diseases/metabolism*
3.Research advances on the structure, function, and related diseases of TREK-1 potassium channels.
Xiao-Ling LI ; Yang LI ; Hong ZHANG
Acta Physiologica Sinica 2024;76(6):1043-1055
Two-pore-domain potassium channels (K2P) family is widely expressed in many human cell types and organs, which has important regulatory effect on physiological processes. K2P is sensitive to a variety of chemical and physical stimuli, and they have also been critically implicated in transmission of neural signal, ion homeostasis, cell development and death, and synaptic plasticity. Aberrant expression and dysfunction of K2P channels are involved in a range of diseases, including autoimmune, central nervous system, cardiovascular disease and others. The scope of this review is to give a detailed overview of the structure, function, pharmacological regulation, and related diseases of TREK-1 channels, a member of the K2P family.
Potassium Channels, Tandem Pore Domain/genetics*
;
Humans
;
Animals
;
Cardiovascular Diseases/physiopathology*
;
Autoimmune Diseases/metabolism*
;
Central Nervous System Diseases/physiopathology*
4.Multidimensional Analgesia of Acupuncture by Increasing Expression of MD2 in Central Nervous System.
Wan-Rong LI ; Lu-Lu REN ; Tian-Tian ZHAO ; Dan-Qing DAI ; Xiao-Fei GAO ; Hua-Zheng LIANG ; Li-Ze XIONG
Chinese journal of integrative medicine 2024;30(11):1035-1044
OBJECTIVE:
To investigate changes of myeloid differentiation factor 2 (MD2) in inflammation-induced pain and acupuncture-mediated analgesia.
METHODS:
Mice were randomly divided into three groups by a random number table method: saline group (n=16), complete Freund's adjuvant (CFA) group (n=24) and CFA+electroacupuncture (EA) group (n=26). Inflammation-induced pain was modelled by injecting CFA to the plantar surface of the hind paw of mice and EA was applied to bilateral Zusanli (ST 36) to alleviate pain. Only mice in the CFA+EA group received EA treatment (30 min/d for 2 weeks) 24 h after modelling. Mice in the saline and CFA groups received sham EA. von-Frey test and Hargreaves test were used to assess the pain threshold. Brain and spinal tissues were collected for immunofluorescence staining or Western blotting to quantify changes of MD2 expression.
RESULTS:
CFA successfully induced plantar pain and EA significantly alleviated pain 3 days after modelling (P<0.01). Compared with the CFA group, the number of MD2+/c-fos+ neurons was significantly increased in the dorsal horn of the spinal cord 7 and 14 days after EA, especially in laminae I - IIo (P<0.01). The proportion of double positive cells to the number of c-fos positive cells and the mean fluorescence intensity of MD2 neurons were also significantly increased in laminae I - IIo (P<0.01). Western blotting showed that the level of MD2 was significantly decreased by EA only in the hippocampus on day 7 and 14 (both P<0.01) and no significant changes were observed in the cortex, thalamus, cerebellum, or the brainstem (P<0.05). Fluorescence staining showed significant decrease in the level of MD2 in periagueductal gray (PAG) and locus coeruleus (LC) after CFA injection on day 7 (P<0.01 for PAG, P<0.05 for LC) and EA significantly reversed this decrease (P<0.01 for PAG, P<0.05 for LC).
CONCLUSION
The unique changes of MD2 suggest that EA may exert the analgesic effect through modulating neuronal activities of the superficial laminae of the spinal cord and certain regions of the brain.
Animals
;
Acupuncture Analgesia/methods*
;
Male
;
Central Nervous System/pathology*
;
Freund's Adjuvant
;
Mice
;
Pain
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Spinal Cord/metabolism*
;
Mice, Inbred C57BL
;
Electroacupuncture/methods*
;
Inflammation/pathology*
5.Effects of intranasal administration of tripterygium glycoside-bearing liposomes on behavioral cognitive impairment of mice induced by central nervous system inflammation.
Min YAN ; Lan ZHANG ; Lu-Lu ZHANG ; Zhen-Qiang ZHANG ; Hua-Hui ZENG ; Xiang-Xiang WU
China Journal of Chinese Materia Medica 2023;48(9):2426-2434
Tripterygium glycosides liposome(TPGL) were prepared by thin film-dispersion method, which were optimized accor-ding to their morphological structures, average particle size and encapsulation rate. The measured particle size was(137.39±2.28) nm, and the encapsulation rate was 88.33%±1.82%. The mouse model of central nervous system inflammation was established by stereotaxic injection of lipopolysaccharide(LPS). TPGL and tripterygium glycosides(TPG) were administered intranasally for 21 days. The effects of intranasal administration of TPG and TPGL on behavioral cognitive impairment of mice due to LPS-induced central ner-vous system inflammation were estimated by animal behavioral tests, hematoxylin-eosin(HE) staining of hippocampus, real-time quantitative polymerase chain reaction(RT-qPCR) and immunofluorescence. Compared with TPG, TPGL caused less damage to the nasal mucosa, olfactory bulb, liver and kidney of mice administered intranasally. The behavioral performance of treated mice was significantly improved in water maze, Y maze and nesting experiment. Neuronal cell damage was reduced, and the expression levels of inflammation and apoptosis related genes [tumor necrosis factor-α(TNF-α), interleukin-1β(IL-1β), BCL2-associated X(Bax), etc.] and glial activation markers [ionized calcium binding adaptor molecule 1(IBA1) and glial fibrillary acidic protein(GFAP)] were decreased. These results indicated that liposome technique combined with nasal delivery alleviated the toxic side effects of TPG, and also significantly ameliorated the cognitive impairment of mice induced by central nervous system inflammation.
Mice
;
Animals
;
Tripterygium
;
Liposomes
;
Glycosides/therapeutic use*
;
Administration, Intranasal
;
Lipopolysaccharides
;
Central Nervous System
;
Cognitive Dysfunction/drug therapy*
;
Inflammation/metabolism*
;
Tumor Necrosis Factor-alpha/metabolism*
;
Cardiac Glycosides
6.Role of N6-methyladenosine RNA methylation in central nervous system: a review.
Chinese Journal of Biotechnology 2023;39(1):45-59
There are a variety of post-transcriptional modifications in mRNA, which regulate the stability, splicing, translation, transport and other processes of mRNA, followed by affecting cell development, body immunity, learning and cognition and other important physiological functions. m6A modification is one of the most abundant post-transcriptional modifications widely existing in mRNA, regulating the metabolic activities of RNA and affecting gene expression. m6A modified homeostasis is critical for the development and maintenance of the nervous system. In recent years, m6A modification has been found in neurodegenerative diseases, mental diseases and brain tumors. This review summarizes the role of m6A methylation modification in the development, function and related diseases of the central nervous system in recent years, providing potential clinical therapeutic targets for neurological diseases.
Methylation
;
Central Nervous System/metabolism*
;
RNA, Messenger/metabolism*
;
RNA
7.Research progress of fibroblast growth factor in nervous system diseases.
Wenting HUANG ; Wanhua QIU ; Kun CHEN ; Shasha YE ; Dongxue WANG ; Jian HU ; Huiqin XU ; Li LIN ; Xiaokun LI
Journal of Zhejiang University. Medical sciences 2023;51(6):738-749
Fibroblast growth factors (FGF) are a group of structurally related polypeptides which constitute an elaborate signaling system with their receptors. Evidence accumulated in the years suggests that the FGF family plays a key role in the repair of central nervous system injury. The main protective mechanisms include activating the expression of PI3K-Akt, peroxisome proliferator-activated receptor (PPARγ) and other signals; inhibiting NF-κB-mediated inflammatory response, oxidative stress and apoptosis; regulating neuronal differentiation and neuronal excitability as well as participating in protection of neurovascular units and nerve function repair. This paper comprehensively summarizes the latest research progress in FGF signaling related to diseases of the central nervous system such as cerebral infarction, cerebral hemorrhage, traumatic brain injury, Alzheimer's disease, Parkinson's disease, epilepsy and depression, aiming to provide scientific basis and reference for the development of innovative FGF drugs for the prevention and treatment of neurological diseases.
Humans
;
Fibroblast Growth Factors
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Central Nervous System/metabolism*
;
Signal Transduction/physiology*
;
Alzheimer Disease
8.Immunological Markers for Central Nervous System Glia.
Hao HUANG ; Wanjun HE ; Tao TANG ; Mengsheng QIU
Neuroscience Bulletin 2023;39(3):379-392
Glial cells in the central nervous system (CNS) are composed of oligodendrocytes, astrocytes and microglia. They contribute more than half of the total cells of the CNS, and are essential for neural development and functioning. Studies on the fate specification, differentiation, and functional diversification of glial cells mainly rely on the proper use of cell- or stage-specific molecular markers. However, as cellular markers often exhibit different specificity and sensitivity, careful consideration must be given prior to their application to avoid possible confusion. Here, we provide an updated overview of a list of well-established immunological markers for the labeling of central glia, and discuss the cell-type specificity and stage dependency of their expression.
Neuroglia/metabolism*
;
Central Nervous System
;
Oligodendroglia/metabolism*
;
Astrocytes/metabolism*
;
Microglia
9.Roles of NG2 Glia in Cerebral Small Vessel Disease.
Yixi HE ; Zhenghao LI ; Xiaoyu SHI ; Jing DING ; Xin WANG
Neuroscience Bulletin 2023;39(3):519-530
Cerebral small vessel disease (CSVD) is one of the most prevalent pathologic processes affecting 5% of people over 50 years of age and contributing to 45% of dementia cases. Increasing evidence has demonstrated the pathological roles of chronic hypoperfusion, impaired cerebral vascular reactivity, and leakage of the blood-brain barrier in CSVD. However, the pathogenesis of CSVD remains elusive thus far, and no radical treatment has been developed. NG2 glia, also known as oligodendrocyte precursor cells, are the fourth type of glial cell in addition to astrocytes, microglia, and oligodendrocytes in the mammalian central nervous system. Many novel functions for NG2 glia in physiological and pathological states have recently been revealed. In this review, we discuss the role of NG2 glia in CSVD and the underlying mechanisms.
Animals
;
Neuroglia/metabolism*
;
Central Nervous System/metabolism*
;
Astrocytes/metabolism*
;
Oligodendroglia/metabolism*
;
Cerebral Small Vessel Diseases/metabolism*
;
Antigens/metabolism*
;
Mammals/metabolism*
10.Advances in basic research on choline and central nervous system development and related disorders.
Zheng Long XIA ; Xu Ying TAN ; Yan Yan SONG
Chinese Journal of Preventive Medicine 2023;57(5):793-800
Choline is an essential nutrient that plays an integral role in all stages of the life cycle, with increasing interest in the relationship between choline and neurodevelopment. Choline is a major component in the synthesis of phospholipids, phosphatidylcholine and sphingolipids, and is an essential nutrient for methyl metabolism, acetylcholine synthesis and cell signaling. Choline plays an important role in neurogenesis and neural migration during fetal development, potentially influencing the development and prognosis of neurological disorders, but its mechanism of action is not yet clear. This article reviews the source and metabolism of choline, the effects and mechanism of choline on neurodevelopment and central nervous system related disorders.
Humans
;
Choline/metabolism*
;
Phosphatidylcholines/metabolism*
;
Central Nervous System/metabolism*

Result Analysis
Print
Save
E-mail