1.Role of mGluR5 in laterocapcular division of central nucleus of amygdala in fentanyl-induced hyperalgesia in rats.
Journal of Central South University(Medical Sciences) 2019;44(4):364-369
To investigate the role of metabotropic glutamate receptor 5 (mGluR5) in laterocapcular division of the central nucleus of amygdala (CeLC) in fentanyl-induced hyperalgesia in rats.
Methods: A total of 12 Sprague-Dawley male rats (60-100 g) were randomly divided into a normal group 1 (n=6) and an opioid-induced hyperalgesia (OIH) group 1 (n=6). The OIH group 1 was injected with fentanyl through the lower neck skin to build OIH model, and the normal group 1 was given the same volume of saline. After 6.5 h, paw withdrawal mechanical threshold (PWMT) and paw withdrawal thermal latency (PWTL) were tested to verify the success of the induction of OIH. Then rats were sacrificed and the right CeLC tissue were taken for detection of the mGluR5 by Western blotting. Forty SD male rats were randomly divided into 4 groups (n=10 each): an OIH+DMSO, an OIH+MTEP (3.0 μg), an OIH+MTEP (7.5 μg) and an OIH+MTEP (15.0 μg) group. MTEP was a selective antagonist of mGluR5. Catheterization in the right CeLC was first performed. After one-week recovery, OIH was induced. Then 0.5 μL DMSO, MTEP 3.0 μg, MTEP 7.5 μg and MTEP 15.0 μg were administrated through the CeLC catheter accordingly. PWMT and PWTL were tested at pre-OIH, 6 h after OIH and post-drug. Then the expression levels of mGluR5 of CeLC tissue were analyzed by Western blotting. Another 8 SD male rats were randomly divided into a normal group 2 and an OIH group 2 (n=4 each). The rats were induced OIH by injecting of fentanyl while rats in the normal group 2 were injected with same volume of saline. The miniature excitatory postsynaptic currents (mEPSCs) of the 2 groups' neurons in the right CeLC region were recorded by whole cell voltage-clamp before and after the administration of MTEP in brain slice.
Results: Compared with the normal group 1, the PWTL and PWMT were significantly decreased and the expression of mGluR5 was apparently increased in the OIH group 1 (P<0.05). The PWMT and PWTL were significantly decreased in each group and indicated success of OIH model (P<0.05). The expression of mGluR5 in the CeLC was increased. MTEP reversed these changes in a dose-dependent way (P<0.05). Compared with the normal group 2, the amplitude and frequency of mEPSCs in the OIH group 2 were significantly increased (P<0.05) and they were reversed by MTEP (P<0.05).
Conclusion: mGluR5 in the CeLC may be involved in the maintenance of OIH. Inhibition of the activity of mGluR5 in the CeLC may alleviate the symptoms of fentanyl-induced hyperalgesia.
Animals
;
Central Amygdaloid Nucleus
;
Fentanyl
;
Hyperalgesia
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Receptor, Metabotropic Glutamate 5
2.Functional Connectivity of Basolateral Amygdala Neurons Carrying Orexin Receptors and Melanin-concentrating Hormone Receptors in Regulating Sociability and Mood-related Behaviors.
Experimental Neurobiology 2016;25(6):307-317
Chronic stress induces changes in neuronal functions in specific brain regions regulating sociability and mood-related behaviors. Recently we reported that stress-induced persistent upregulation of the neuropeptides orexin and melanin-concentrating hormone (MCH) in the basolateral amygdala (BLA) and the resulting activation of orexin receptors or MCH receptors within the BLA produced deficits in sociability and mood-related behaviors. In the present study, we investigated the neural targets that were innervated by BLA neurons containing orexin receptors or MCH receptors. The viral vector system AAV2-CaMKII-ChR2-eYFP was injected into the BLA to trace the axonal tracts of BLA neurons. This axon labeling analysis led us to identify the prelimbic and infralimbic cortices, nucleus accumbens (NAc), dorsal striatum, paraventricular nucleus (PVN), interstitial nucleus of the posterior limb of the anterior commissure, habenula, CA3 pyramidal neurons, central amygdala, and ventral hippocampus as the neuroanatomical sites receiving synaptic inputs of BLA neurons. Focusing on these regions, we then carried out stimulus-dependent c-Fos induction analysis after activating orexin receptors or MCH receptors of BLA neurons. Stereotaxic injection of an orexin receptor agonist or an MCH receptor agonist in the BLA induced c-Fos expression in the NAc, PVN, central amygdala, ventral hippocampus, lateral habenula and lateral hypothalamus, which are all potentially important for depression-related behaviors. Among these neural correlates, the NAc, PVN and central amygdala were strongly activated by stimulation of orexin receptors or MCH receptors in the BLA, whereas other BLA targets were differentially and weakly activated. These results identify a functional connectivity of BLA neurons regulated by orexin and MCH receptor systems in sociability and mood-related behaviors.
Axons
;
Basolateral Nuclear Complex*
;
Brain
;
Central Amygdaloid Nucleus
;
Depression
;
Extremities
;
Habenula
;
Hippocampus
;
Hypothalamic Area, Lateral
;
Neurons*
;
Neuropeptides
;
Nucleus Accumbens
;
Orexin Receptors*
;
Paraventricular Hypothalamic Nucleus
;
Pyramidal Cells
;
Up-Regulation
3.Corticotrophin-releasing hormone neurons in the central amygdala mediate morphine withdrawal-induced negative emotions.
Xue-Ying WANG ; Min YU ; Lan MA ; Fei-Fei WANG ; Chang-You JIANG
Acta Physiologica Sinica 2019;71(6):824-832
Drugs of abuse leads to adaptive changes in the brain stress system, and produces negative affective states including aversion and anxiety after drug use is terminated. Corticotrophin-releasing hormone (CRH) is the main transmitter in control of response to stressors and is neuronal enriched in the central amygdala (CeA), a sub-region of the extended amygdala playing an important role in integrating emotional information and modulating stress response. The effect of CRH neurons in CeA on the negative emotions on morphine naïve and withdrawal mice is unclear. Thus, we utilized CRH-Cre transgenic mice injected with AAV-mediated Designer Receptors Exclusively Activated By Designer Drugs (DREADDs) to chemogenetically manipulate CRH neurons in CeA. And methods of behavior analysis, including conditioned place aversion (CPA), elevated plus maze and locomotor activity tests, were used to investigate morphine withdrawal-induced negative emotions in mice. The results showed that, inhibiting CRH neurons of CeA decreased the formation of morphine withdrawal-induced CPA, as well as the anxiety level of CRH-Cre mice. Furthermore, specifically activating CRH neurons in CeA evoked CPA and anxiety of morphine naïve mice. Neither inhibiting nor activating CRH neurons had effects on their locomotor activity. These results suggest that CRH neurons in CeA are involved in the mediation of morphine withdrawal-induced negative emotion in mice, providing a theoretical basis for drug addiction and relapse mechanism.
Adrenocorticotropic Hormone
;
Animals
;
Central Amygdaloid Nucleus
;
Corticotropin-Releasing Hormone
;
metabolism
;
Emotions
;
physiology
;
Mice
;
Morphine
;
metabolism
;
Neurons
;
metabolism
4.µ-opioid receptors in the central nucleus of the amygdala regulate food rather than water intake in rats.
Journal of Southern Medical University 2014;34(12):1707-1712
OBJECTIVETo investigate the effect of µ-opioid receptors (µ-ORs) in the central nucleus of the amygdala (CeA) on feeding and drinking behaviors in rats and evaluate the role of glutamate signaling in opioid-mediated ingestive behaviors.
METHODSStainless steel cannulas were implanted in the unilateral CeA for microinjection of different doses of the selective µ-OR agonist DAMGO in satiated or water-deprived male SD rats. The subsequent food intake or water intake of the rats was measured at 60, 120, and 240 min after the injection. The rats receiving microinjections of naloxone (NTX, a nonselective opioid antagonist) or D-AP-5 (a selective N-methyl-D-aspartic acid-type glutamate receptor antagonist) prior to DAMGO microinjection were tested for food intake at 60, 120, and 240 min after the injections.
RESULTSInjections of DAMGO (1-4 nmol in 0.5 µl) into the CeA significantly increased food intake in satiated rats, but did not affect water intake in rats with water deprivation. NTX (26.5 nmol in 0.5 µl) injected into the CeA antagonized DAMGO-induced feeding but D-AP-5 (6.3-25.4 nmol in 0.5 µl) injections did not produce such an effect.
CONCLUSIONµ-ORs in the CeA regulate food intake rather than water intake in rats, and the orexigenic role of µ-ORs is not dependent on the activation of the NMDA receptors in the CeA.
2-Amino-5-phosphonovalerate ; pharmacology ; Animals ; Central Amygdaloid Nucleus ; physiology ; Drinking ; physiology ; Eating ; physiology ; Enkephalin, Ala(2)-MePhe(4)-Gly(5)- ; pharmacology ; Excitatory Amino Acid Antagonists ; pharmacology ; Male ; Naloxone ; pharmacology ; Narcotic Antagonists ; pharmacology ; Rats ; Rats, Sprague-Dawley ; Receptors, Opioid, mu ; physiology
5.Altered Neuronal Activity in the Central Nucleus of the Amygdala Induced by Restraint Water-Immersion Stress in Rats.
Feng HE ; Hongbin AI ; Min WANG ; Xiusong WANG ; Xiwen GENG
Neuroscience Bulletin 2018;34(6):1067-1076
Restraint water-immersion stress (RWIS), a compound stress model, has been widely used to induce acute gastric ulceration in rats. A wealth of evidence suggests that the central nucleus of the amygdala (CEA) is a focal region for mediating the biological response to stress. Different stressors induce distinct alterations of neuronal activity in the CEA; however, few studies have reported the characteristics of CEA neuronal activity induced by RWIS. Therefore, we explored this issue using immunohistochemistry and in vivo extracellular single-unit recording. Our results showed that RWIS and restraint stress (RS) differentially changed the c-Fos expression and firing properties of neurons in the medial CEA. In addition, RWIS, but not RS, induced the activation of corticotropin-releasing hormone neurons in the CEA. These findings suggested that specific neuronal activation in the CEA is involved in the formation of RWIS-induced gastric ulcers. This study also provides a possible theoretical explanation for the different gastric dysfunctions induced by different stressors.
Action Potentials
;
drug effects
;
physiology
;
Analysis of Variance
;
Animals
;
Central Amygdaloid Nucleus
;
pathology
;
Corticotropin-Releasing Hormone
;
metabolism
;
Disease Models, Animal
;
Gastric Mucosa
;
pathology
;
Gene Expression Regulation
;
physiology
;
Neurons
;
physiology
;
Patch-Clamp Techniques
;
Proto-Oncogene Proteins c-fos
;
metabolism
;
Rats
;
Rats, Wistar
;
Stress, Physiological
;
physiology
;
Stress, Psychological
;
etiology
;
physiopathology