1.Investigation and optimization on ability of enzymatic hydrolysis of Mori Cortex residue.
Xin-Yao SU ; Chun-Li JIANG ; Ya-Chun XU ; Meng-Chu SUN ; Chen-Hao HUANG ; Jian-Ping XUE ; Cai-Xia WANG
China Journal of Chinese Materia Medica 2018;43(1):86-91
Residue of Mori Cortex was studied to optimize its enzymatic hydrolysis process, and explore its potential as a carbon source for biochemistry and biofuel production. The cellulose content of diluted acid pretreated (DAP) and non-pretreated from Mori Cortex were measured in this study, and the results showed that the cellulose content of DAP and non-pretreated from Mori Cortex were 52.5% and 47%, respectively. This higher cellulose content indicated that residue of Mori Cortex had the potential to act as a carbon source for biochemistry and biofuel production. Enzymatic hydrolysis of pretreated and non-pretreated from Mori Cortex was conducted under different enzyme loading amount. 40 FPU·(g DW)⁻¹ enzyme loading was determined as the optimal amount by comparing the yield of sugar and the rate of enzymolysis. Under this condition, the concentrations of glucose, xylose, arabinose sugar were 23.82, 4.84, 3.6 g·L⁻¹, and the corresponding enzymatic hydrolysis rate was 45.33% which was 2.3 times higher than that of non-pretreated from Morus alba residues. Fed-batch enzymatic hydrolysis was conducted finally to get higher sugar yield, and the final glucose concentration reached up to 38 g·L⁻¹ with the enzymatic hydrolysis rate of 36.19%. The results indicated that Mori Cortex residue had higher cellulose and hemicellulose contents, so it had the potential to become a carbon source to produce the bio-chemicals and biofuels. Through enzymatic hydrolysis, it can be converted into microbial available monosaccharides; and through fermentation, it can be converted into high value-added chemicals, biofuels, etc., to solve the problem of residue pollution, and achieve the sustainable development and greening of Chinese pharmaceutical production process.
Carbohydrates
;
Cellulose
;
chemistry
;
Enzymes
;
metabolism
;
Fermentation
;
Hydrolysis
;
Morus
;
chemistry
2.Trends in polymer-grade L-lactic acid fermentation by non-food biomass.
Bo YU ; Yan ZENG ; Xu JIANG ; Limin WANG ; Yanhe MA
Chinese Journal of Biotechnology 2013;29(4):411-421
Lactic acid has a wide range of uses in the chemical, pharmaceutical and food industry. With rapid development of poly (lactic acid) industry, the demand for polymer-grade L-lactic acid is continuously increasing. Developing low-cost, non-food-biomass-lactic-acid fermentation process and the fermentation-separation coupled technology are trends to reduce polymer-grade L-lactic acid production cost. This review summarized the most recent advances in low-cost L-lactic acid fermentation based on the use of non-food biomass, followed by addressing the key issue that might be strategically important for future development of polymer-grade L-lactic acid production in industry.
Biomass
;
Biotechnology
;
trends
;
Cellulose
;
metabolism
;
Fermentation
;
Insulin
;
metabolism
;
Lactic Acid
;
metabolism
;
Manihot
;
metabolism
;
Polymers
;
metabolism
3.Advances in and challenges for thermophilic fermentation of cellulosic ethanol.
Chinese Journal of Biotechnology 2013;29(3):274-284
Thermophiles can produce cellulosic ethanol at a high temperature where ethanol is directly distillated from fermentation, and biodegradation of lignocellulose can be simultaneously achieved when these thermophiles carry and express cellulase and hemicellulase genes. The simultaneous biodegradation, fermentation and distillation, a three-in-one process, can result in low production costs of cellulosic ethanol. We reviewed the advances and challenges in the approach to the three-in-one process, which refer to lignocellulases, regulation mechanisms, and genetic transfer systems.
Bacteria
;
genetics
;
metabolism
;
Cellulose
;
metabolism
;
Ethanol
;
metabolism
;
Fermentation
;
Hot Temperature
;
Thermoanaerobacterium
;
metabolism
4.Study function of endophytic fungus in parasitism process of mistletoe.
Zhi-Shan DING ; Fu-Sheng JIANG ; Bo JIN ; Li XU ; Ni-Pi CHEN ; Gui-Yuan LV
China Journal of Chinese Materia Medica 2008;33(11):1243-1246
OBJECTIVETo research the function of endophytes of mistletoe in parasitism process of mistletoe in Pterocarya stenoptera.
METHODEndophytes from eight different parts of the mistletoe were separated by explant culture, and further screened by different CMC plates culture and DNS method to get cellulase high productive strains. The distribution of the endophytic fungus parasitized in mistletoe were prepared and stained to demonstrate by histological section of the intumescentia part of the P. stenoptera.
RESULTThe histological section indicated that aboundent of hyphasma were distributed around the haustorium of the mistletoe. Eighty three strains of endophytic fungus were separated, 38 of them were able to degrade cellulose, 19 strains showed high cellulase activity and 10 of which were separated from the parasitic position.
CONCLUSIONEndophytic fungus of mistletoe can secrete cellulase and assist the haustorium of mistletoe to breakthrough the cell walls as well as intercellular space tissues of the P. stenoptera, thus, the endophytic fungus plays an important role in the parasitism process of mistletoe in P. stenoptera.
Cellulase ; metabolism ; Cellulose ; metabolism ; Fungi ; metabolism ; Juglandaceae ; Symbiosis ; Viscum ; cytology ; microbiology
5.Synergistic effect of feruloyl esterase and cellulase in hydrolyzation of steam-exploded rice straw.
Chinese Journal of Biotechnology 2009;25(1):49-54
Ferulic acid esterase (FAE) was used to hydrolyze feruloyl ester linkages between hemicellulose and lignin in natural lignocellulose, and the possibility of FAE accelerating cellulase to hydrolyze steam-exploded rice straw by breaking covalent linkages was studied. When the dosage of FAE was 240 mu/g substrate, the cellulose conversion rate and the weight-loss rate of insoluble substrate at 72 h were respectively 32.00% and 32.77%, more than without using FAE; Cellulose conversion rate and the weight-loss rate of insoluble substrate were respectively 29.85% and 32.48% with FAE (300 mu/g substrate) processing time of 120 min. By comparison of the accessibility and FT-IR spectra of lignocellulosic material treated by different enzyme methods, it indicated that FAE hydrolyzed some ester bonds within it, and improved the accessibility by over 50%. It is concluded that FAE and cellulase have great synergistic effect, and FAE can help cellulase hydrolyze natural lignocellulose and enhance hydrolytic efficiency.
Carboxylic Ester Hydrolases
;
metabolism
;
Cellulase
;
metabolism
;
Cellulose
;
metabolism
;
Oryza
;
enzymology
;
Plant Stems
;
enzymology
;
Steam
6.Effects of rumen microorganisms on the decomposition of recycled straw residue.
Kailun SONG ; Zicheng ZHOU ; Jinhai LENG ; Songwen FANG ; Chunhuo ZHOU ; Guorong NI ; Lichun KANG ; Xin YIN
Journal of Zhejiang University. Science. B 2023;24(4):336-344
Recently, returning straw to the fields has been proved as a direct and effective method to tackle soil nutrient loss and agricultural pollution. Meanwhile, the slow decomposition of straw may harm the growth of the next crop. This study aimed to determine the effects of rumen microorganisms (RMs) on straw decomposition, bacterial microbial community structure, soil properties, and soil enzyme activity. The results showed that RMs significantly enhanced the degradation rate of straw in the soil, reaching 39.52%, which was 41.37% higher than that of the control on the 30th day after straw return. After 30 d, straw degradation showed a significant slower trend in both the control and the experimental groups. According to the soil physicochemical parameters, the application of rumen fluid expedited soil matter transformation and nutrient buildup, and increased the urease, sucrase, and cellulase activity by 10%‒20%. The qualitative analysis of straw showed that the hydroxyl functional group structure of cellulose in straw was greatly damaged after the application of rumen fluid. The analysis of soil microbial community structure revealed that the addition of rumen fluid led to the proliferation of Actinobacteria with strong cellulose degradation ability, which was the main reason for the accelerated straw decomposition. Our study highlights that returning rice straw to the fields with rumen fluid inoculation can be used as an effective measure to enhance the biological value of recycled rice straw, proposing a viable solution to the problem of sluggish straw decomposition.
Animals
;
Rumen/metabolism*
;
Agriculture/methods*
;
Soil/chemistry*
;
Microbiota
;
Bacteria/metabolism*
;
Oryza/metabolism*
;
Soil Microbiology
;
Cellulose
7.Comparative study on infection and degradation of Armillaria gallica and Phallus impudicus to fungus-growing materials.
Jie YANG ; Jin-Qiang ZHANG ; Tao ZHOU ; Lan-Ping GUO ; Jiao XU ; Qing-Song YUAN ; Wei-Ke JIANG ; Xiao WANG ; Guang-Wen ZHANG ; Cheng PAN ; Da-Hui LIU
China Journal of Chinese Materia Medica 2020;45(3):472-477
The phenomenon that waste of fungus-growing materials in the planting process of Gastrodia elata is very common. It has been proved by practice that the used fungus-growing materials planted with G. elata can be used to plant Phallus impudicus. But the mechanism is unclear. In this study, we compared the different infested-capacity of Armillaria gallica and Phallus impudicus by morphological anatomy of the used fungus-growing materials. We also compared the differences on the two fungi consumed the main contents of fungus-growing materials, cellulose, lignin and hemicellulose, by using nitric acid-95% ethanol method, sulfuric acid method and tetrabromide method respectively, so that to explore the mechanism of A. gallica and P. impudicus recycle the fungus-growing materials, and to provide scientific basis for recycling the used fungus-growing materials of G. elata. The results showed that A. gallica had a strong ability to invade some parts outside the vascular cambium, but it had a weak ability to invade some parts inside the vascular cambium, while P. impudicus had a strong ability to invade the same parts. The contents of lignin and cellulose, which from inside and outside the vascular cambium of fungus-growing materials were significantly different. In the parts of outside the vascular cambium of fungus-growing materials, A. gallica degraded more lignin and cellulose, while P. impudicus degraded more hemicellulose. In the parts of inside the vascular cambium of fungus-growing materials, A. gallica degraded more cellulose, while P. impudicus degraded more hemicellulose. The present results suggested that A. gallica and P. impudicus made differential utilization of the carbon source in the fungus-growing materials to realize that P. impudicus recycle the used fungus-growing materials of G. elata. A. gallica used lignin and cellulose as the main carbon source, while P. impudicus used hemicellulose as the main carbon source.
Agaricales/growth & development*
;
Armillaria/growth & development*
;
Cellulose/metabolism*
;
Lignin/metabolism*
;
Polysaccharides/metabolism*
8.Purification and characteristics of creatininase from Arthrobacter sp.
Geng-Feng ZHAO ; Xiao-Hang MA ; Xiao-Ming JIA ; Yu-Hua ZHAO ; Yuan-Yuan WANG
Chinese Journal of Biotechnology 2005;21(2):250-253
A creatininase produced from a Arthrobacter sp. was purified 145-fold by a series of steps including heat treatment, ammonium sulfate precipitation, DEAE-Cellulose ion-exchange and hydrophobic chromatography. The specific activity of the pure enzyme was 209u/mg. The subunit molecular mass of creatininase was estimated to be 33 700D by SDS-PAGE. The creatininase was stable in the pH range between 6.0 - 9.0 and below 60 degrees C . Its Km value for creatinine was estimated to be 21.14 mmol/L. The enzyme was markedly inactivated by incubation with 1 mmol/L of Hg2+, Ag2+, Li+, Cu2+ and 20 mmol/L of 1, 11-Phananthroline respectively. Activation was observed when the enzyme was incubated with 1 mmol/L of Co2+ and Mn2+.
Amidohydrolases
;
isolation & purification
;
metabolism
;
Arthrobacter
;
enzymology
;
Bacterial Proteins
;
isolation & purification
;
metabolism
;
Chromatography, DEAE-Cellulose
;
methods
9.Influence of ZSM-5(38)/Al-MCM-41 composite molecular sieve catalysts on pyrolysis of cellulose.
Xiaojuan LIU ; Fengwen YU ; Yong NIE ; Yao LUO ; Jianbing JI
Chinese Journal of Biotechnology 2011;27(3):398-403
Pyrolysis of cellulose with different catalysts has been conducted in a fixed-bed reactor. Micro-mesoporous composite molecular sieves of ZSM-5(38)/A1-MCM-41 with different Si/A1 ratios were prepared under hydrothermal conditions. With powder X-ray diffraction (XRD), the catalyst samples were characterized. GC-MS was used to analyze the bio-oil composition. The effects of catalysts on the pyrolysis product yields were investigated and the results were compared with the results of experiments performed without catalyst under the same pyrolitic conditions. The presence of the catalysts decreased the liquid yield, while increased the moisture content. The major improvement in the quality of bio-oil with the use of catalysts was the increase of DL-2,3-Butanediol. ZSM-5(38)/A1-MCM-41(20) favored the formation of phenol and 2-methoxy-phenol. In addition, these catalysts were all benefit for the generation of small molecular compounds. Also, it was found that ZSM-5(38) was better for the production of C4-C5 compounds. And micro-mesoporous composite molecular sieves mainly promoted the production of C6-C8 compounds.
Catalysis
;
Cellulose
;
metabolism
;
Plant Oils
;
metabolism
;
Refuse Disposal
;
Silicon Dioxide
;
chemistry
;
Zeolites
;
chemistry
10.Culture-independent digging of cellulases and genes from natural environments.
Yongtao ZHU ; Weifeng LIU ; Lushan WANG ; Guanjun CHEN
Chinese Journal of Biotechnology 2009;25(12):1838-1843
There is a great diversity for cellulolytic microbes in nature and the strategies they use to digest cellulose. In addition to the cultured cellulolytic microbes, there are still a great number of microbes being not readily culturable in natural environments, which may represent great potential for identifying novel cellulases and their encoding genes. The rise of metagenomics and metaproteomics provides essential technologic tools to dig up these resources and significant progress has been made so far. This review gives an insight into some relative results that have arisen from the meta-genomic or proteomic analysis of definitive uncultured microbe communities. Their potential role in elucidating the process and mechanisms of cellulose degradation in natural environment from the point of "community system microbiology" is also discussed.
Bacteria
;
enzymology
;
genetics
;
Cellulases
;
genetics
;
metabolism
;
Cellulose
;
metabolism
;
Cloning, Molecular
;
Environmental Microbiology
;
Genome, Bacterial
;
Metagenomics